Matches in SemOpenAlex for { <https://semopenalex.org/work/W618442812> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W618442812 endingPage "695" @default.
- W618442812 startingPage "687" @default.
- W618442812 abstract "The standard SVM classifier is not adjusted to processing large training set as the computational complexity can reach O(n 3). To overcome this limitation we discuss the idea of reducing the size of the training data by initial preprocessing of the training set using Learning Vector Quantization (LVQ) neural network and then building the SVM model using prototypes returned by the LVQ network. As the LVQ network scales linearly with n, and in contrast to clustering algorithms utilizes label information it seems to be a good choice for initial data compression." @default.
- W618442812 created "2016-06-24" @default.
- W618442812 creator A5008786377 @default.
- W618442812 date "2015-01-01" @default.
- W618442812 modified "2023-10-14" @default.
- W618442812 title "Reducing Time Complexity of SVM Model by LVQ Data Compression" @default.
- W618442812 cites W1523590985 @default.
- W618442812 cites W1526741802 @default.
- W618442812 cites W1535540078 @default.
- W618442812 cites W2151537585 @default.
- W618442812 cites W4243803532 @default.
- W618442812 cites W138720755 @default.
- W618442812 doi "https://doi.org/10.1007/978-3-319-19324-3_61" @default.
- W618442812 hasPublicationYear "2015" @default.
- W618442812 type Work @default.
- W618442812 sameAs 618442812 @default.
- W618442812 citedByCount "2" @default.
- W618442812 countsByYear W6184428122016 @default.
- W618442812 countsByYear W6184428122023 @default.
- W618442812 crossrefType "book-chapter" @default.
- W618442812 hasAuthorship W618442812A5008786377 @default.
- W618442812 hasConcept C119857082 @default.
- W618442812 hasConcept C12267149 @default.
- W618442812 hasConcept C124101348 @default.
- W618442812 hasConcept C153180895 @default.
- W618442812 hasConcept C154945302 @default.
- W618442812 hasConcept C199833920 @default.
- W618442812 hasConcept C34736171 @default.
- W618442812 hasConcept C40567965 @default.
- W618442812 hasConcept C41008148 @default.
- W618442812 hasConcept C50644808 @default.
- W618442812 hasConcept C51632099 @default.
- W618442812 hasConcept C73555534 @default.
- W618442812 hasConcept C95623464 @default.
- W618442812 hasConceptScore W618442812C119857082 @default.
- W618442812 hasConceptScore W618442812C12267149 @default.
- W618442812 hasConceptScore W618442812C124101348 @default.
- W618442812 hasConceptScore W618442812C153180895 @default.
- W618442812 hasConceptScore W618442812C154945302 @default.
- W618442812 hasConceptScore W618442812C199833920 @default.
- W618442812 hasConceptScore W618442812C34736171 @default.
- W618442812 hasConceptScore W618442812C40567965 @default.
- W618442812 hasConceptScore W618442812C41008148 @default.
- W618442812 hasConceptScore W618442812C50644808 @default.
- W618442812 hasConceptScore W618442812C51632099 @default.
- W618442812 hasConceptScore W618442812C73555534 @default.
- W618442812 hasConceptScore W618442812C95623464 @default.
- W618442812 hasLocation W6184428121 @default.
- W618442812 hasOpenAccess W618442812 @default.
- W618442812 hasPrimaryLocation W6184428121 @default.
- W618442812 hasRelatedWork W1835182418 @default.
- W618442812 hasRelatedWork W1992825654 @default.
- W618442812 hasRelatedWork W2041636156 @default.
- W618442812 hasRelatedWork W2114221533 @default.
- W618442812 hasRelatedWork W2126100045 @default.
- W618442812 hasRelatedWork W2160451891 @default.
- W618442812 hasRelatedWork W3049633467 @default.
- W618442812 hasRelatedWork W3162160273 @default.
- W618442812 hasRelatedWork W4242764575 @default.
- W618442812 hasRelatedWork W1858454510 @default.
- W618442812 isParatext "false" @default.
- W618442812 isRetracted "false" @default.
- W618442812 magId "618442812" @default.
- W618442812 workType "book-chapter" @default.