Matches in SemOpenAlex for { <https://semopenalex.org/work/W61869633> ?p ?o ?g. }
- W61869633 endingPage "979" @default.
- W61869633 startingPage "971" @default.
- W61869633 abstract "Gene therapy has long been regarded a promising treatment for many diseases, whether acquired (such as AIDS or cancer) or inherited through a genetic disorder. A drug based on a nucleic acid, however, must be delivered to the interior of the target cell while surviving an array of biological defenses honed by evolution. Successful gene therapy is thus dependent on the development of an efficient delivery vector. Researchers have pursued two major vehicles for gene delivery: viral and nonviral (synthetic) vectors. Although viral vectors currently offer greater efficiency, nonviral vectors, which are typically based on cationic lipids or polymers, are preferred because of safety concerns with viral vectors. So far, nonviral vectors can readily transfect cells in culture, but efficient nanomedicines remain far removed from the clinic. Overcoming the obstacles associated with nonviral vectors to improve the delivery efficiency and therapeutic effect of nucleic acids is thus an active area of current research. The difficulties are manifold, including the strong interaction of cationic delivery vehicles with blood components, uptake by the reticuloendothelial system (RES), toxicity, and managing the targeting ability of the carriers with respect to the cells of interest. Modifying the surface with poly(ethylene glycol), that is, PEGylation, is the predominant method used to reduce the binding of plasma proteins to nonviral vectors and minimize clearance by the RES after intravenous administration. Nanoparticles that are not rapidly cleared from the circulation accumulate in the tumors because of the enhanced permeability and retention effect, and the targeting ligands attached to the distal end of the PEGylated components allow binding to the receptors on the target cell surface. Neutral and anionic liposomes have been also developed for systemic delivery of nucleic acids in experimental animal models. Other approaches include (i) designing and synthesizing novel cationic lipids and polymers, (ii) chemically coupling the nucleic acid to peptides, targeting ligands, polymers, or environmentally sensitive moieties, and (iii) utilizing inorganic nanoparticles in nucleic acid delivery. Recently, the different classes of nonviral vectors appear to be converging, and the ability to combine features of different classes of nonviral vectors in a single strategy has emerged. With the strengths of several approaches working in concert, more hurdles associated with efficient nucleic acid delivery might therefore be overcome. In this Account, we focus on these novel nonviral vectors, which are classified as multifunctional hybrid nucleic acid vectors, novel membrane/core nanoparticles for nucleic acid delivery, and ultrasound-responsive nucleic acid vectors. We highlight systemic delivery studies and consider the future prospects for nucleic acid delivery. A better understanding of the fate of the nanoparticles inside the cell and of the interactions between the parts of hybrid particles should lead to a delivery system suitable for clinical use. We also underscore the value of sustained release of a nucleic acid in this endeavor; making vectors targeted to cells with sustained release in vivo should provide an interesting research challenge." @default.
- W61869633 created "2016-06-24" @default.
- W61869633 creator A5033300046 @default.
- W61869633 creator A5055514145 @default.
- W61869633 date "2011-08-26" @default.
- W61869633 modified "2023-10-11" @default.
- W61869633 title "Recent Advances in Nonviral Vectors for Gene Delivery" @default.
- W61869633 cites W1616824889 @default.
- W61869633 cites W1966356719 @default.
- W61869633 cites W1969722896 @default.
- W61869633 cites W1971933964 @default.
- W61869633 cites W1979728286 @default.
- W61869633 cites W1979993886 @default.
- W61869633 cites W1981298152 @default.
- W61869633 cites W1982116701 @default.
- W61869633 cites W1987506727 @default.
- W61869633 cites W1989611595 @default.
- W61869633 cites W1997213980 @default.
- W61869633 cites W1997787046 @default.
- W61869633 cites W1999386415 @default.
- W61869633 cites W2000888033 @default.
- W61869633 cites W2002862770 @default.
- W61869633 cites W2002927583 @default.
- W61869633 cites W2003478034 @default.
- W61869633 cites W2003493943 @default.
- W61869633 cites W2009086910 @default.
- W61869633 cites W2012544502 @default.
- W61869633 cites W2015920239 @default.
- W61869633 cites W2022409781 @default.
- W61869633 cites W2029175314 @default.
- W61869633 cites W2029430817 @default.
- W61869633 cites W2030182917 @default.
- W61869633 cites W2030582796 @default.
- W61869633 cites W2030833955 @default.
- W61869633 cites W2032288259 @default.
- W61869633 cites W2032903792 @default.
- W61869633 cites W2048608918 @default.
- W61869633 cites W2049334703 @default.
- W61869633 cites W2049706010 @default.
- W61869633 cites W2049854598 @default.
- W61869633 cites W2055204109 @default.
- W61869633 cites W2056493684 @default.
- W61869633 cites W2061136308 @default.
- W61869633 cites W2062678945 @default.
- W61869633 cites W2068942685 @default.
- W61869633 cites W2076089035 @default.
- W61869633 cites W2080688395 @default.
- W61869633 cites W2080977629 @default.
- W61869633 cites W2082111987 @default.
- W61869633 cites W2090160156 @default.
- W61869633 cites W2091925112 @default.
- W61869633 cites W2100207346 @default.
- W61869633 cites W2119491006 @default.
- W61869633 cites W2120847624 @default.
- W61869633 cites W2125394569 @default.
- W61869633 cites W2126630077 @default.
- W61869633 cites W2127099679 @default.
- W61869633 cites W2130115096 @default.
- W61869633 cites W2140379507 @default.
- W61869633 cites W2141570423 @default.
- W61869633 cites W2158063443 @default.
- W61869633 cites W2162604547 @default.
- W61869633 cites W2166786073 @default.
- W61869633 cites W2221895275 @default.
- W61869633 cites W2314642321 @default.
- W61869633 cites W2315113383 @default.
- W61869633 cites W2329664419 @default.
- W61869633 cites W4205777899 @default.
- W61869633 doi "https://doi.org/10.1021/ar200151m" @default.
- W61869633 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3240701" @default.
- W61869633 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21870813" @default.
- W61869633 hasPublicationYear "2011" @default.
- W61869633 type Work @default.
- W61869633 sameAs 61869633 @default.
- W61869633 citedByCount "526" @default.
- W61869633 countsByYear W618696332012 @default.
- W61869633 countsByYear W618696332013 @default.
- W61869633 countsByYear W618696332014 @default.
- W61869633 countsByYear W618696332015 @default.
- W61869633 countsByYear W618696332016 @default.
- W61869633 countsByYear W618696332017 @default.
- W61869633 countsByYear W618696332018 @default.
- W61869633 countsByYear W618696332019 @default.
- W61869633 countsByYear W618696332020 @default.
- W61869633 countsByYear W618696332021 @default.
- W61869633 countsByYear W618696332022 @default.
- W61869633 countsByYear W618696332023 @default.
- W61869633 crossrefType "journal-article" @default.
- W61869633 hasAuthorship W61869633A5033300046 @default.
- W61869633 hasAuthorship W61869633A5055514145 @default.
- W61869633 hasBestOaLocation W618696332 @default.
- W61869633 hasConcept C102747710 @default.
- W61869633 hasConcept C104317684 @default.
- W61869633 hasConcept C111599444 @default.
- W61869633 hasConcept C126894567 @default.
- W61869633 hasConcept C135983454 @default.
- W61869633 hasConcept C138944611 @default.
- W61869633 hasConcept C1491633281 @default.