Matches in SemOpenAlex for { <https://semopenalex.org/work/W619148164> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W619148164 endingPage "632" @default.
- W619148164 startingPage "627" @default.
- W619148164 abstract "Stochastic traffic assignment provides a natural framework for looking at how travellers obtain and interpret information about their transport system, and how they apply what they learn to route choice. However, in order to model traveller learning effectively it is necessary firstly, to distinguish between-day from within-day dynamics, and secondly, to classify travellers in terms of their travel knowledge. Most stochastic assignment models will not readily incorporate such features. In this paper a new assignment method, which includes these important elements, is described. The evolution of the transport system is modelled as a discrete time Markov Chain in which each iteration is subdivided into a between-day and a within-day stage. Theoretical properties of this model are outlined, and numerical results are obtained on the development of traffic flow over a road network under various schemes for driver learning." @default.
- W619148164 created "2016-06-24" @default.
- W619148164 creator A5010136944 @default.
- W619148164 creator A5077430514 @default.
- W619148164 date "1997-06-01" @default.
- W619148164 modified "2023-09-24" @default.
- W619148164 title "Modelling Traveller Learning in Stochastic Traffic Assignment" @default.
- W619148164 cites W11154866 @default.
- W619148164 cites W1968740528 @default.
- W619148164 cites W2008590558 @default.
- W619148164 cites W2019482021 @default.
- W619148164 cites W2032711141 @default.
- W619148164 cites W2052332138 @default.
- W619148164 cites W2053128027 @default.
- W619148164 cites W2057368954 @default.
- W619148164 cites W599881665 @default.
- W619148164 cites W1520538693 @default.
- W619148164 doi "https://doi.org/10.1016/s1474-6670(17)43891-2" @default.
- W619148164 hasPublicationYear "1997" @default.
- W619148164 type Work @default.
- W619148164 sameAs 619148164 @default.
- W619148164 citedByCount "4" @default.
- W619148164 countsByYear W6191481642017 @default.
- W619148164 crossrefType "journal-article" @default.
- W619148164 hasAuthorship W619148164A5010136944 @default.
- W619148164 hasAuthorship W619148164A5077430514 @default.
- W619148164 hasConcept C127413603 @default.
- W619148164 hasConcept C22212356 @default.
- W619148164 hasConcept C41008148 @default.
- W619148164 hasConcept C42475967 @default.
- W619148164 hasConceptScore W619148164C127413603 @default.
- W619148164 hasConceptScore W619148164C22212356 @default.
- W619148164 hasConceptScore W619148164C41008148 @default.
- W619148164 hasConceptScore W619148164C42475967 @default.
- W619148164 hasIssue "8" @default.
- W619148164 hasLocation W6191481641 @default.
- W619148164 hasOpenAccess W619148164 @default.
- W619148164 hasPrimaryLocation W6191481641 @default.
- W619148164 hasRelatedWork W1503285415 @default.
- W619148164 hasRelatedWork W1516455402 @default.
- W619148164 hasRelatedWork W1541087157 @default.
- W619148164 hasRelatedWork W2244752860 @default.
- W619148164 hasRelatedWork W2389528444 @default.
- W619148164 hasRelatedWork W2899084033 @default.
- W619148164 hasRelatedWork W300043372 @default.
- W619148164 hasRelatedWork W3146548853 @default.
- W619148164 hasRelatedWork W605816536 @default.
- W619148164 hasRelatedWork W617987602 @default.
- W619148164 hasVolume "30" @default.
- W619148164 isParatext "false" @default.
- W619148164 isRetracted "false" @default.
- W619148164 magId "619148164" @default.
- W619148164 workType "article" @default.