Matches in SemOpenAlex for { <https://semopenalex.org/work/W619781918> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W619781918 endingPage "77" @default.
- W619781918 startingPage "67" @default.
- W619781918 abstract "Abstract In this paper, we consider the smooth solutions u ( x , t ) , with suitable decay at infinity, of the Euler equations on R 2 × ( 0 , ∞ ) . We assume that the initial vorticity ω 0 = ∇ × u 0 has a compact support which leads by Marchioro (1994, 1996) to a consequence that the support of the vorticity ω ( t ) for any finite time is a bounded set. Then, we will show that the decay(growth) rate, in L p ( R 2 ) spaces for 2 p ≤ ∞ (for 1 p 2 ), of the smooth solutions of the Euler equations on R 2 cannot be faster than t − 1 3 + 2 3 p as t → ∞ . We will see that the L p -norm of the solution u ( x , t ) is equivalent to the L q -norm for any 1 q p ≤ ∞ ." @default.
- W619781918 created "2016-06-24" @default.
- W619781918 creator A5089372894 @default.
- W619781918 date "2015-09-01" @default.
- W619781918 modified "2023-09-29" @default.
- W619781918 title "The asymptotic behavior of the smooth solutions of the Euler equations in R2" @default.
- W619781918 cites W1968960848 @default.
- W619781918 cites W1986497389 @default.
- W619781918 cites W1997255359 @default.
- W619781918 cites W2051701239 @default.
- W619781918 cites W2052812663 @default.
- W619781918 cites W2055021661 @default.
- W619781918 doi "https://doi.org/10.1016/j.na.2015.05.009" @default.
- W619781918 hasPublicationYear "2015" @default.
- W619781918 type Work @default.
- W619781918 sameAs 619781918 @default.
- W619781918 citedByCount "1" @default.
- W619781918 countsByYear W6197819182018 @default.
- W619781918 crossrefType "journal-article" @default.
- W619781918 hasAuthorship W619781918A5089372894 @default.
- W619781918 hasConcept C134306372 @default.
- W619781918 hasConcept C28826006 @default.
- W619781918 hasConcept C33923547 @default.
- W619781918 hasConcept C38409319 @default.
- W619781918 hasConcept C62884695 @default.
- W619781918 hasConcept C75380026 @default.
- W619781918 hasConceptScore W619781918C134306372 @default.
- W619781918 hasConceptScore W619781918C28826006 @default.
- W619781918 hasConceptScore W619781918C33923547 @default.
- W619781918 hasConceptScore W619781918C38409319 @default.
- W619781918 hasConceptScore W619781918C62884695 @default.
- W619781918 hasConceptScore W619781918C75380026 @default.
- W619781918 hasFunder F4320321408 @default.
- W619781918 hasFunder F4320322030 @default.
- W619781918 hasLocation W6197819181 @default.
- W619781918 hasOpenAccess W619781918 @default.
- W619781918 hasPrimaryLocation W6197819181 @default.
- W619781918 hasRelatedWork W2008813521 @default.
- W619781918 hasRelatedWork W2018090687 @default.
- W619781918 hasRelatedWork W2039299714 @default.
- W619781918 hasRelatedWork W2079547538 @default.
- W619781918 hasRelatedWork W2357986411 @default.
- W619781918 hasRelatedWork W2378504881 @default.
- W619781918 hasRelatedWork W2417495913 @default.
- W619781918 hasRelatedWork W3038053996 @default.
- W619781918 hasRelatedWork W3162423291 @default.
- W619781918 hasRelatedWork W4210307857 @default.
- W619781918 hasVolume "125" @default.
- W619781918 isParatext "false" @default.
- W619781918 isRetracted "false" @default.
- W619781918 magId "619781918" @default.
- W619781918 workType "article" @default.