Matches in SemOpenAlex for { <https://semopenalex.org/work/W619794083> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W619794083 abstract "Ground-level ozone (O3) and fine particulate matter (PM2.5) are two air pollutants known to reduce visibility, to have damaging effects on building materials and adverse impacts on human health. O3 is the result of a series of complex chemical reactions between nitrogen oxides (NOx) and volatile organic compounds (VOCs) in the presence of solar radiation. PM is a class of airborne contaminants composed of sulphate, nitrate, ammonium, crustal components and trace amounts of microorganisms. PM2.5 is the respirable subgroup of PM having an aerodynamic diameter of less than 2.5 μm. Development of effective forecasting models for ground-level O3 and PM2.5 is important to warn the public about potentially harmful or unhealthy concentration levels. The objectives of this study is to investigate the applicability of Multiple Linear Regression (MLR), Principle Component Regression (PCR), Multivariate Adaptive Regression Splines (MARS), feed-forward Artificial Neural Networks (ANN) and hybrid Principal Component – Artificial Neural Networks (PC-ANN) models to predict concentrations of O3 and PM2.5 in Montreal (Canada). Air quality and meteorological data is obtained from the Reseau de surveillance de la qualite de l’air (RSQA) for the Airport Station (45°28′N, 73°44′W) and the Maisonneuve Station (45°30′N, 73°34′W) for the period January 2004 to December 2007. Air pollution data include concentration values for nitrogen monoxide (NO), nitrogen dioxide (NO2), carbon monoxide (CO) and 142 different volatile organic compounds. Meteorological data include solar irradiation (SR), temperature (Temp), pressure (Press), dew point (DP), precipitation (Precip), wind speed (WS) and wind direction (WD). Analysis of the available volatile organic compound data expressed on a propylene-equivalent concentration indicated that m/p-xylene, toluene, propylene and (1,2,4)-trimethylbenzene were species with the most significant ozone forming potential in the study area. Different models and architectures have been investigated through five case studies. Predictive performances of each model have been measured by means of performance metrics and forecast success rates. Overall, MARS models allowing second order interaction of independent basis functions yielded lower error, higher correlation and higher forecast success rates. This study indicates that models based on statistical methods can be cost-effective tools to forecast ground-level O3 and PM2.5 in Montreal and to provide support for decision makers in protecting human health." @default.
- W619794083 created "2016-06-24" @default.
- W619794083 creator A5066464501 @default.
- W619794083 date "2011-05-01" @default.
- W619794083 modified "2023-09-27" @default.
- W619794083 title "Comparative Performance of Different Statistical Models for Predicting Ground-Level Ozone (O3) and Fine Particulate Matter (PM2.5) Concentrations in Montréal, Canada" @default.
- W619794083 hasPublicationYear "2011" @default.
- W619794083 type Work @default.
- W619794083 sameAs 619794083 @default.
- W619794083 citedByCount "0" @default.
- W619794083 crossrefType "dissertation" @default.
- W619794083 hasAuthorship W619794083A5066464501 @default.
- W619794083 hasConcept C107872376 @default.
- W619794083 hasConcept C126314574 @default.
- W619794083 hasConcept C127313418 @default.
- W619794083 hasConcept C153294291 @default.
- W619794083 hasConcept C178790620 @default.
- W619794083 hasConcept C185592680 @default.
- W619794083 hasConcept C205649164 @default.
- W619794083 hasConcept C24245907 @default.
- W619794083 hasConcept C2780723490 @default.
- W619794083 hasConcept C2910478969 @default.
- W619794083 hasConcept C39432304 @default.
- W619794083 hasConcept C508106653 @default.
- W619794083 hasConcept C559116025 @default.
- W619794083 hasConcept C82210777 @default.
- W619794083 hasConcept C87717796 @default.
- W619794083 hasConcept C91586092 @default.
- W619794083 hasConceptScore W619794083C107872376 @default.
- W619794083 hasConceptScore W619794083C126314574 @default.
- W619794083 hasConceptScore W619794083C127313418 @default.
- W619794083 hasConceptScore W619794083C153294291 @default.
- W619794083 hasConceptScore W619794083C178790620 @default.
- W619794083 hasConceptScore W619794083C185592680 @default.
- W619794083 hasConceptScore W619794083C205649164 @default.
- W619794083 hasConceptScore W619794083C24245907 @default.
- W619794083 hasConceptScore W619794083C2780723490 @default.
- W619794083 hasConceptScore W619794083C2910478969 @default.
- W619794083 hasConceptScore W619794083C39432304 @default.
- W619794083 hasConceptScore W619794083C508106653 @default.
- W619794083 hasConceptScore W619794083C559116025 @default.
- W619794083 hasConceptScore W619794083C82210777 @default.
- W619794083 hasConceptScore W619794083C87717796 @default.
- W619794083 hasConceptScore W619794083C91586092 @default.
- W619794083 hasLocation W6197940831 @default.
- W619794083 hasOpenAccess W619794083 @default.
- W619794083 hasPrimaryLocation W6197940831 @default.
- W619794083 hasRelatedWork W1870329404 @default.
- W619794083 hasRelatedWork W2035564080 @default.
- W619794083 hasRelatedWork W2063645120 @default.
- W619794083 hasRelatedWork W2072533561 @default.
- W619794083 hasRelatedWork W2087650515 @default.
- W619794083 hasRelatedWork W2165377226 @default.
- W619794083 hasRelatedWork W2264216925 @default.
- W619794083 hasRelatedWork W2755342631 @default.
- W619794083 hasRelatedWork W2803772408 @default.
- W619794083 hasRelatedWork W2804818988 @default.
- W619794083 hasRelatedWork W2936386745 @default.
- W619794083 hasRelatedWork W2937965175 @default.
- W619794083 hasRelatedWork W2944043120 @default.
- W619794083 hasRelatedWork W3007971415 @default.
- W619794083 hasRelatedWork W3011435463 @default.
- W619794083 hasRelatedWork W3036260305 @default.
- W619794083 hasRelatedWork W3080185158 @default.
- W619794083 hasRelatedWork W3081596257 @default.
- W619794083 hasRelatedWork W3175209304 @default.
- W619794083 hasRelatedWork W2078001042 @default.
- W619794083 isParatext "false" @default.
- W619794083 isRetracted "false" @default.
- W619794083 magId "619794083" @default.
- W619794083 workType "dissertation" @default.