Matches in SemOpenAlex for { <https://semopenalex.org/work/W620120132> ?p ?o ?g. }
Showing items 1 to 26 of
26
with 100 items per page.
- W620120132 abstract "Outre l'etude de l'existence de solutions auto-similaires pour des equations de type barenblatt, la partie principale de ce travail concerne la limite singuliere de problemes d'evolution de type u#t = #p(|u|#m#-#1u) + g(. , u) sur (0,t) x , u(0,. ) = u#0(. ) 0 sur , avec des conditions au bord (0,t) x , lorsque le parametre m tend vers l'infini et 1 < p < est fixe. Dans le cas g 0 et p = 2, le probleme est completement resolu et on sait que si la donnee initiale u#0 prend ses valeurs dans -1, +1, alors la solution u#m(t) tend vers u#0 dans l#1(). Mais, la situation est tres differente si la donnee initiale ne prend plus ses valeurs dans -1, +1 : un phenomene de couche limite en t = 0 apparait ; la limite devient singuliere. On montre que ces resultats restent vrais pour p quelconque dans le cas radial symetrique decroissant et on donne aussi quelques autres resultats si l'on abandonne l'hypothese radiale decroissante. Pour le cas g 0, on etablit un resultat general et nouveau de la theorie des semi-groupes non-lineaires sur la limite singuliere d'une suite de problemes d'evolution du#m/dt + a#m u#m f(t, u#m) sur (0,t), u#m(0) = u#0#m ou pour m = 1,. . , a#m est un operateur m-accretif d'un espace de banach x, u#0#m est un element de x adherent au domaine de a#m et f est un operateur continu de x, difference d'un operateur lipzchitzien et d'un operateur accretif de telle sorte que le probleme admet une unique bonne solution. Ceci nous a permis, d'une part, de montrer l'existence et la caracterisation de la limite de la solution de notre probleme concret dans le cas p = 2, r#n un ouvert borne. Ceci, en montrant l'equivalence entre la notion de solution faible et la notion de solution au sens de semi-groupes non-lineaires, argument essentiel pour appliquer les resultats abstraits. D'autre part, ces resultats concernent aussi bien le cas de condition au bord de type dirichlet que le cas de condition au bord de type neumann, qui fait apparaitre des phenomenes nouveaux de stabilisation sur une constante en temps fini." @default.
- W620120132 created "2016-06-24" @default.
- W620120132 creator A5081569470 @default.
- W620120132 date "1997-01-01" @default.
- W620120132 modified "2023-09-24" @default.
- W620120132 title "Limite singuliere de problemes d'evolution non-lineaires" @default.
- W620120132 hasPublicationYear "1997" @default.
- W620120132 type Work @default.
- W620120132 sameAs 620120132 @default.
- W620120132 citedByCount "2" @default.
- W620120132 countsByYear W6201201322014 @default.
- W620120132 crossrefType "dissertation" @default.
- W620120132 hasAuthorship W620120132A5081569470 @default.
- W620120132 hasConcept C121332964 @default.
- W620120132 hasConcept C138885662 @default.
- W620120132 hasConcept C15708023 @default.
- W620120132 hasConceptScore W620120132C121332964 @default.
- W620120132 hasConceptScore W620120132C138885662 @default.
- W620120132 hasConceptScore W620120132C15708023 @default.
- W620120132 hasLocation W6201201321 @default.
- W620120132 hasOpenAccess W620120132 @default.
- W620120132 hasPrimaryLocation W6201201321 @default.
- W620120132 isParatext "false" @default.
- W620120132 isRetracted "false" @default.
- W620120132 magId "620120132" @default.
- W620120132 workType "dissertation" @default.