Matches in SemOpenAlex for { <https://semopenalex.org/work/W622386674> ?p ?o ?g. }
- W622386674 abstract "This thesis mainly studies inverse scattering applied to the field of fiber Bragg gratings. I focus on the layer-peeling inverse scattering algorithm, and use this algorithm to design gratings and reconstruct their spatial profile from measured complex reflection spectra.Using a discrete grating model, we find necessary and sufficient conditions for the reflection response to be realizable as a grating of finite length. With the help of these conditions, a general method for designing gratings with a given finite length is proposed. The proposed method is demonstrated to give designs with better side lobe suppression and less ripple than designs based on windowing.Fiber Bragg gratings is known to be birefringent with slightly polarizationdependent background index and polarization-dependent effective index contrast. The birefringence may lead to coupling between polarization modes. Scattering will now involve two forward-propagating and two backward-propagating modes, and the response from the grating is characterized by a frequency-dependent reflection Jones matrix. A polarization-resolved layer-peeling algorithm is developed to reconstruct the polarization-dependent background index and polarization-dependent effective index contrast from the reflection Jones matrix. Realizability criteria for birefringent gratings of a finite length is obtained.In some cases, more than two waveguide modes interact. There may be interaction between bounded modes within a fiber supporting several modes, or between the core mode and cladding modes in a “single mode” fiber. To handle inverse scattering in such cases, we have developed a layer-peeling algorithm that takes into account any number of interacting modes, where the interaction may be both codirectional and contradirectional. The modes may have equal or different propagation constants. We will show that this method can also be used for discrete multimode structures and 3D structures.The complex reflectivity spectrum of gratings is measured with optical frequency domain reflectometry. The response from a Michelson interferometer, where the grating constitutes one of the reflectors, is recorded while sweeping the laser. The measured spectrum is fed into the layer-peeling algorithm for calculation of the spatial profile of the grating. The method gives satisfactory results for gratings up to 98-99 %. In order to spatially characterize stronger gratings, the grating is thermally chirped so that the reflectivity is reduced and the spectral information is spread over a wider bandwidth. In this way, the spatial profile of a grating with −66 dB minimum transmission is successfully reconstructed.A method for measuring the reflection Jones matrix of gratings has been developed. The source polarization is continuously modulated through four states of polarization that can be represented by four linearly independent Stokes vectors. This polarization modulation is achieved by placing a Mach-Zehnder-type interferometer in between the laser and the Michelson interferometer containing the grating.The polarization modulation interferometer has three paths with different delay and retardation. It spreads different components of the grating impulse response Jones matrix into separable bands in the optical time domain. The impulse response is reconstructed from these bands, and is fed into the polarization-resolved layer-peeling algorithm to calculate the polarization-dependent index modulation and birefringence. This measurement setup is used to characterize the polarization dependence of index modulation resulting from different uv-polarization used to fabricate the gratings." @default.
- W622386674 created "2016-06-24" @default.
- W622386674 creator A5064727075 @default.
- W622386674 date "2007-01-01" @default.
- W622386674 modified "2023-09-23" @default.
- W622386674 title "Inverse Scattering and Experimental Characterization of Optical Grating Filters" @default.
- W622386674 cites W1497291852 @default.
- W622386674 cites W1497899691 @default.
- W622386674 cites W1522469295 @default.
- W622386674 cites W1569935233 @default.
- W622386674 cites W1636884554 @default.
- W622386674 cites W1669107829 @default.
- W622386674 cites W1671757968 @default.
- W622386674 cites W1963523075 @default.
- W622386674 cites W1967121252 @default.
- W622386674 cites W1973456491 @default.
- W622386674 cites W1974649937 @default.
- W622386674 cites W1979619360 @default.
- W622386674 cites W1983249630 @default.
- W622386674 cites W1985116735 @default.
- W622386674 cites W1986668747 @default.
- W622386674 cites W1987169260 @default.
- W622386674 cites W1987446061 @default.
- W622386674 cites W1987859659 @default.
- W622386674 cites W1988949271 @default.
- W622386674 cites W1989018028 @default.
- W622386674 cites W1989581318 @default.
- W622386674 cites W1995132361 @default.
- W622386674 cites W1996291721 @default.
- W622386674 cites W1997871536 @default.
- W622386674 cites W1999116262 @default.
- W622386674 cites W2003143270 @default.
- W622386674 cites W2009530981 @default.
- W622386674 cites W2010966220 @default.
- W622386674 cites W2013870857 @default.
- W622386674 cites W2017012039 @default.
- W622386674 cites W2019299686 @default.
- W622386674 cites W2019659811 @default.
- W622386674 cites W2021357733 @default.
- W622386674 cites W2022255802 @default.
- W622386674 cites W2024580425 @default.
- W622386674 cites W2025394295 @default.
- W622386674 cites W2026520495 @default.
- W622386674 cites W2030775779 @default.
- W622386674 cites W2033544244 @default.
- W622386674 cites W2033587307 @default.
- W622386674 cites W2034010375 @default.
- W622386674 cites W2034829031 @default.
- W622386674 cites W2041911008 @default.
- W622386674 cites W2044915122 @default.
- W622386674 cites W2047436244 @default.
- W622386674 cites W2049572838 @default.
- W622386674 cites W2055810533 @default.
- W622386674 cites W2056433442 @default.
- W622386674 cites W2057584076 @default.
- W622386674 cites W2057659761 @default.
- W622386674 cites W2059329502 @default.
- W622386674 cites W2060918885 @default.
- W622386674 cites W2061916727 @default.
- W622386674 cites W2062301252 @default.
- W622386674 cites W2063370769 @default.
- W622386674 cites W2066850579 @default.
- W622386674 cites W2069930696 @default.
- W622386674 cites W2071344514 @default.
- W622386674 cites W2074628972 @default.
- W622386674 cites W2076656909 @default.
- W622386674 cites W2077275090 @default.
- W622386674 cites W2080434554 @default.
- W622386674 cites W2082147212 @default.
- W622386674 cites W2084656577 @default.
- W622386674 cites W2085009766 @default.
- W622386674 cites W2085241851 @default.
- W622386674 cites W2086449467 @default.
- W622386674 cites W2094427049 @default.
- W622386674 cites W2097185237 @default.
- W622386674 cites W2100328323 @default.
- W622386674 cites W2102270285 @default.
- W622386674 cites W2105988672 @default.
- W622386674 cites W2108208539 @default.
- W622386674 cites W2108788955 @default.
- W622386674 cites W2110977895 @default.
- W622386674 cites W2117392728 @default.
- W622386674 cites W2121422678 @default.
- W622386674 cites W2121808419 @default.
- W622386674 cites W2123612130 @default.
- W622386674 cites W2126469758 @default.
- W622386674 cites W2127495683 @default.
- W622386674 cites W2130031876 @default.
- W622386674 cites W2130058519 @default.
- W622386674 cites W2130812726 @default.
- W622386674 cites W2134078850 @default.
- W622386674 cites W2134242307 @default.
- W622386674 cites W2134961626 @default.
- W622386674 cites W2135714341 @default.
- W622386674 cites W2137380232 @default.
- W622386674 cites W2137387496 @default.
- W622386674 cites W2139063779 @default.
- W622386674 cites W2140637004 @default.
- W622386674 cites W2141600541 @default.
- W622386674 cites W2146202309 @default.