Matches in SemOpenAlex for { <https://semopenalex.org/work/W622963762> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W622963762 abstract "This assignment has been given by Defence Communication (DC) which is a division of Kongsberg Defence and Aerospace(KDA). KDA develops amongst other things military radio equipment for communication and data transfer. In this equipment there is use of digital logic that performes amongst other things integer and fixed point division. Current systems developed at KDA uses both application specific integrated circuit (ASIC) and field programmable gate arrays (FPGA) to implement the digital logic. In both these technologies it is implemented circuit to performed integer and fixed point division. These are designed for low latency implementations. For future applications it is desire to investigate the possibility of implementing a high throughput pipelined division circuit for both 16 and 64 bit operands. In this project several commonly implemented division methods and algorithms has been studied, amongst others digit recurrence and multiplicative algorithms. Of the studied methods, multiplicative methods early stood out as the best implementation. These methods include the Goldschmidt and Newton-Raphson method. Both these methods require and initial approximation towards the correct answer. Based on this, several methods for finding an initial approximation were investigated, amongst others bipartite and multipartite lookup tables. Of the two multiplicative methods, Newton-Raphsons method proved to give the best implementation. This is due to the fact that it is possible with Newton-Raphsons method to implement each stage with the same bit widths as the precision out of that stage. This means that each stage is only halve the size of the succeeding stage. Also since the first stages were found to be small compared to the last stage, it was found that it is best to use a rough approximation towards the correct value and then use more stages to achieve the target precision. To evaluate how different design choices will affect the speed, size and throughput of an implementation, several configurations were implemented in VHDL and synthesized to FPGAs. These implementations were optimized for high speed whit high pipeline depth and size, and low speed with low pipeline depth and size. This was done for both 16 and 64 bits implementations. The synthesizes showed that there is possible to achieve great speed at the cost of increased size, or a small circuit while still achieving an acceptable speed. In addition it was found that it is optimal in a high throughput pipelined division circuit to use a less precise initial approximation and instead use more iterations stages." @default.
- W622963762 created "2016-06-24" @default.
- W622963762 creator A5002625804 @default.
- W622963762 date "2009-01-01" @default.
- W622963762 modified "2023-09-24" @default.
- W622963762 title "Construction of digital integer arithmetic: FPGA implementation of high throughput pipelined division circuit" @default.
- W622963762 hasPublicationYear "2009" @default.
- W622963762 type Work @default.
- W622963762 sameAs 622963762 @default.
- W622963762 citedByCount "0" @default.
- W622963762 crossrefType "dissertation" @default.
- W622963762 hasAuthorship W622963762A5002625804 @default.
- W622963762 hasConcept C111919701 @default.
- W622963762 hasConcept C113775141 @default.
- W622963762 hasConcept C11413529 @default.
- W622963762 hasConcept C114237110 @default.
- W622963762 hasConcept C131017901 @default.
- W622963762 hasConcept C134306372 @default.
- W622963762 hasConcept C136625980 @default.
- W622963762 hasConcept C157764524 @default.
- W622963762 hasConcept C157922185 @default.
- W622963762 hasConcept C173608175 @default.
- W622963762 hasConcept C182775192 @default.
- W622963762 hasConcept C199360897 @default.
- W622963762 hasConcept C33923547 @default.
- W622963762 hasConcept C34854456 @default.
- W622963762 hasConcept C41008148 @default.
- W622963762 hasConcept C42747912 @default.
- W622963762 hasConcept C42935608 @default.
- W622963762 hasConcept C55526617 @default.
- W622963762 hasConcept C555944384 @default.
- W622963762 hasConcept C60798267 @default.
- W622963762 hasConcept C76155785 @default.
- W622963762 hasConcept C77390884 @default.
- W622963762 hasConcept C83581934 @default.
- W622963762 hasConcept C9390403 @default.
- W622963762 hasConcept C94375191 @default.
- W622963762 hasConcept C97137487 @default.
- W622963762 hasConceptScore W622963762C111919701 @default.
- W622963762 hasConceptScore W622963762C113775141 @default.
- W622963762 hasConceptScore W622963762C11413529 @default.
- W622963762 hasConceptScore W622963762C114237110 @default.
- W622963762 hasConceptScore W622963762C131017901 @default.
- W622963762 hasConceptScore W622963762C134306372 @default.
- W622963762 hasConceptScore W622963762C136625980 @default.
- W622963762 hasConceptScore W622963762C157764524 @default.
- W622963762 hasConceptScore W622963762C157922185 @default.
- W622963762 hasConceptScore W622963762C173608175 @default.
- W622963762 hasConceptScore W622963762C182775192 @default.
- W622963762 hasConceptScore W622963762C199360897 @default.
- W622963762 hasConceptScore W622963762C33923547 @default.
- W622963762 hasConceptScore W622963762C34854456 @default.
- W622963762 hasConceptScore W622963762C41008148 @default.
- W622963762 hasConceptScore W622963762C42747912 @default.
- W622963762 hasConceptScore W622963762C42935608 @default.
- W622963762 hasConceptScore W622963762C55526617 @default.
- W622963762 hasConceptScore W622963762C555944384 @default.
- W622963762 hasConceptScore W622963762C60798267 @default.
- W622963762 hasConceptScore W622963762C76155785 @default.
- W622963762 hasConceptScore W622963762C77390884 @default.
- W622963762 hasConceptScore W622963762C83581934 @default.
- W622963762 hasConceptScore W622963762C9390403 @default.
- W622963762 hasConceptScore W622963762C94375191 @default.
- W622963762 hasConceptScore W622963762C97137487 @default.
- W622963762 hasLocation W6229637621 @default.
- W622963762 hasOpenAccess W622963762 @default.
- W622963762 hasPrimaryLocation W6229637621 @default.
- W622963762 hasRelatedWork W115113880 @default.
- W622963762 hasRelatedWork W1944073140 @default.
- W622963762 hasRelatedWork W1993912195 @default.
- W622963762 hasRelatedWork W2087165364 @default.
- W622963762 hasRelatedWork W2100972708 @default.
- W622963762 hasRelatedWork W2102743999 @default.
- W622963762 hasRelatedWork W2107170344 @default.
- W622963762 hasRelatedWork W2109312194 @default.
- W622963762 hasRelatedWork W2155295891 @default.
- W622963762 hasRelatedWork W2157506576 @default.
- W622963762 hasRelatedWork W2169075541 @default.
- W622963762 hasRelatedWork W2169603555 @default.
- W622963762 hasRelatedWork W2202598811 @default.
- W622963762 hasRelatedWork W2604515753 @default.
- W622963762 hasRelatedWork W3209654388 @default.
- W622963762 hasRelatedWork W2187757694 @default.
- W622963762 hasRelatedWork W2596745737 @default.
- W622963762 hasRelatedWork W2601532135 @default.
- W622963762 hasRelatedWork W2771024904 @default.
- W622963762 hasRelatedWork W3144614199 @default.
- W622963762 isParatext "false" @default.
- W622963762 isRetracted "false" @default.
- W622963762 magId "622963762" @default.
- W622963762 workType "dissertation" @default.