Matches in SemOpenAlex for { <https://semopenalex.org/work/W623166477> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W623166477 startingPage "439" @default.
- W623166477 abstract "Self-Generating Neural Networks (SGNN) have the feature of fast processing by automatically constructing a self-generating neural tree (SGNT) from a given training data set. The prediction accuracy of SGNNs for chaotic time series prediction is improved by ensemble averaging of various SGNNs. However, the computation time increases with the number of SGNNs on a single processor. In this paper, we investigate improvement of the prediction accuracy and parallel efficiency of ensemble SGNNs for chaotic time series prediction problems on an MIMD parallel computer. We allocate each SGNN to one processor. Our results show that as the number of node processors increases, a continuing improvement of prediction accuracy is obtained for all problems, while maintaining the high-speed processing performance of the single SGNN. © 2005 Wiley Periodicals, Inc. Syst Comp Jpn, 36(10): 82–92, 2005; Published online in Wiley InterScience (). DOI 10.1002sscj.10297" @default.
- W623166477 created "2016-06-24" @default.
- W623166477 creator A5033822534 @default.
- W623166477 creator A5072650136 @default.
- W623166477 date "2002-02-01" @default.
- W623166477 modified "2023-09-26" @default.
- W623166477 title "Parallel Performance of Ensemble Self-Generating Neural Networks for Chaotic Time Series Prediction Problems" @default.
- W623166477 hasPublicationYear "2002" @default.
- W623166477 type Work @default.
- W623166477 sameAs 623166477 @default.
- W623166477 citedByCount "0" @default.
- W623166477 crossrefType "journal-article" @default.
- W623166477 hasAuthorship W623166477A5033822534 @default.
- W623166477 hasAuthorship W623166477A5072650136 @default.
- W623166477 hasConcept C11413529 @default.
- W623166477 hasConcept C119857082 @default.
- W623166477 hasConcept C138885662 @default.
- W623166477 hasConcept C143724316 @default.
- W623166477 hasConcept C151406439 @default.
- W623166477 hasConcept C151730666 @default.
- W623166477 hasConcept C154945302 @default.
- W623166477 hasConcept C173608175 @default.
- W623166477 hasConcept C177264268 @default.
- W623166477 hasConcept C199360897 @default.
- W623166477 hasConcept C21032095 @default.
- W623166477 hasConcept C2776401178 @default.
- W623166477 hasConcept C2777052490 @default.
- W623166477 hasConcept C41008148 @default.
- W623166477 hasConcept C41895202 @default.
- W623166477 hasConcept C45374587 @default.
- W623166477 hasConcept C50644808 @default.
- W623166477 hasConcept C86803240 @default.
- W623166477 hasConceptScore W623166477C11413529 @default.
- W623166477 hasConceptScore W623166477C119857082 @default.
- W623166477 hasConceptScore W623166477C138885662 @default.
- W623166477 hasConceptScore W623166477C143724316 @default.
- W623166477 hasConceptScore W623166477C151406439 @default.
- W623166477 hasConceptScore W623166477C151730666 @default.
- W623166477 hasConceptScore W623166477C154945302 @default.
- W623166477 hasConceptScore W623166477C173608175 @default.
- W623166477 hasConceptScore W623166477C177264268 @default.
- W623166477 hasConceptScore W623166477C199360897 @default.
- W623166477 hasConceptScore W623166477C21032095 @default.
- W623166477 hasConceptScore W623166477C2776401178 @default.
- W623166477 hasConceptScore W623166477C2777052490 @default.
- W623166477 hasConceptScore W623166477C41008148 @default.
- W623166477 hasConceptScore W623166477C41895202 @default.
- W623166477 hasConceptScore W623166477C45374587 @default.
- W623166477 hasConceptScore W623166477C50644808 @default.
- W623166477 hasConceptScore W623166477C86803240 @default.
- W623166477 hasIssue "2" @default.
- W623166477 hasLocation W6231664771 @default.
- W623166477 hasOpenAccess W623166477 @default.
- W623166477 hasPrimaryLocation W6231664771 @default.
- W623166477 hasRelatedWork W1507823785 @default.
- W623166477 hasRelatedWork W1558102296 @default.
- W623166477 hasRelatedWork W2007567623 @default.
- W623166477 hasRelatedWork W2056714484 @default.
- W623166477 hasRelatedWork W2080427027 @default.
- W623166477 hasRelatedWork W2117435895 @default.
- W623166477 hasRelatedWork W2160757661 @default.
- W623166477 hasRelatedWork W2337474653 @default.
- W623166477 hasRelatedWork W2348589109 @default.
- W623166477 hasRelatedWork W2349719543 @default.
- W623166477 hasRelatedWork W2354425371 @default.
- W623166477 hasRelatedWork W2382106331 @default.
- W623166477 hasRelatedWork W2382946662 @default.
- W623166477 hasRelatedWork W2388973078 @default.
- W623166477 hasRelatedWork W2392922565 @default.
- W623166477 hasRelatedWork W2546581791 @default.
- W623166477 hasRelatedWork W2560817176 @default.
- W623166477 hasRelatedWork W2958743743 @default.
- W623166477 hasRelatedWork W3096252500 @default.
- W623166477 hasRelatedWork W3165559534 @default.
- W623166477 hasVolume "85" @default.
- W623166477 isParatext "false" @default.
- W623166477 isRetracted "false" @default.
- W623166477 magId "623166477" @default.
- W623166477 workType "article" @default.