Matches in SemOpenAlex for { <https://semopenalex.org/work/W624825514> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W624825514 abstract "When determining a preservation plan for a pavement management system, it is important to select projects of highest priority, as limited funding cannot meet all preservation needs. Currently, in the state of Texas, each district uses locally developed methods to prioritize projects based on the subjective judgment of engineers rather than on formal quantitative assessment. Artificial neural networks (ANN) can be trained with a series of statewide pavement preservation plans and corresponding PMIS data. This study applied the concept of artificial neural networks (ANN’s) to select projects for the 4 year plan of the Texas Department of Transportation (TxDOT). The data obtained for this study included the maintenance and rehabilitation schedules for selected road sections from 2009 to 2013 collected from the 4 year plans of all 25 TxDOT districts. TxDOT’s corresponding Pavement Management Information System (PMIS) data for 2009 was used as input data in the neural network. Based on attributes from the PMIS data, such as traffic and pavement distresses, each section in the PMIS was related to the 4 year plan data and identified as a project (=1) or not a project (=0). The dataset was then randomly divided into a train set (80% of data) and a test set (20% of data) for the ANN training and validation, respectively. After applying the data to an ANN using the data mining program, WEKA, an optimal network structure was developed that resulted in 99.85% of the training data and 98.90% of the test-data being correctly classified." @default.
- W624825514 created "2016-06-24" @default.
- W624825514 creator A5058775598 @default.
- W624825514 creator A5067921447 @default.
- W624825514 creator A5079314386 @default.
- W624825514 creator A5080989272 @default.
- W624825514 date "2014-01-01" @default.
- W624825514 modified "2023-09-26" @default.
- W624825514 title "Maintenance and Rehabilitation Project Selection Using Artificial Neural Networks" @default.
- W624825514 hasPublicationYear "2014" @default.
- W624825514 type Work @default.
- W624825514 sameAs 624825514 @default.
- W624825514 citedByCount "3" @default.
- W624825514 countsByYear W6248255142018 @default.
- W624825514 countsByYear W6248255142019 @default.
- W624825514 countsByYear W6248255142022 @default.
- W624825514 crossrefType "journal-article" @default.
- W624825514 hasAuthorship W624825514A5058775598 @default.
- W624825514 hasAuthorship W624825514A5067921447 @default.
- W624825514 hasAuthorship W624825514A5079314386 @default.
- W624825514 hasAuthorship W624825514A5080989272 @default.
- W624825514 hasConcept C127413603 @default.
- W624825514 hasConcept C154945302 @default.
- W624825514 hasConcept C166957645 @default.
- W624825514 hasConcept C205649164 @default.
- W624825514 hasConcept C22212356 @default.
- W624825514 hasConcept C2776505523 @default.
- W624825514 hasConcept C2780996376 @default.
- W624825514 hasConcept C41008148 @default.
- W624825514 hasConcept C42475967 @default.
- W624825514 hasConcept C50644808 @default.
- W624825514 hasConceptScore W624825514C127413603 @default.
- W624825514 hasConceptScore W624825514C154945302 @default.
- W624825514 hasConceptScore W624825514C166957645 @default.
- W624825514 hasConceptScore W624825514C205649164 @default.
- W624825514 hasConceptScore W624825514C22212356 @default.
- W624825514 hasConceptScore W624825514C2776505523 @default.
- W624825514 hasConceptScore W624825514C2780996376 @default.
- W624825514 hasConceptScore W624825514C41008148 @default.
- W624825514 hasConceptScore W624825514C42475967 @default.
- W624825514 hasConceptScore W624825514C50644808 @default.
- W624825514 hasLocation W6248255141 @default.
- W624825514 hasOpenAccess W624825514 @default.
- W624825514 hasPrimaryLocation W6248255141 @default.
- W624825514 hasRelatedWork W14408641 @default.
- W624825514 hasRelatedWork W2028915092 @default.
- W624825514 hasRelatedWork W2061719980 @default.
- W624825514 hasRelatedWork W2068752679 @default.
- W624825514 hasRelatedWork W2180584481 @default.
- W624825514 hasRelatedWork W2282111263 @default.
- W624825514 hasRelatedWork W2594356992 @default.
- W624825514 hasRelatedWork W2790514764 @default.
- W624825514 hasRelatedWork W406127479 @default.
- W624825514 hasRelatedWork W578935816 @default.
- W624825514 hasRelatedWork W605438790 @default.
- W624825514 hasRelatedWork W607257900 @default.
- W624825514 hasRelatedWork W616956070 @default.
- W624825514 hasRelatedWork W629603468 @default.
- W624825514 hasRelatedWork W640428002 @default.
- W624825514 hasRelatedWork W657712808 @default.
- W624825514 hasRelatedWork W789894271 @default.
- W624825514 hasRelatedWork W797198255 @default.
- W624825514 hasRelatedWork W808695217 @default.
- W624825514 hasRelatedWork W568726492 @default.
- W624825514 isParatext "false" @default.
- W624825514 isRetracted "false" @default.
- W624825514 magId "624825514" @default.
- W624825514 workType "article" @default.