Matches in SemOpenAlex for { <https://semopenalex.org/work/W62820921> ?p ?o ?g. }
- W62820921 endingPage "1664" @default.
- W62820921 startingPage "1656" @default.
- W62820921 abstract "Many Bayesian learning methods for massive data benefit from working with small subsets of observations. In particular, significant progress has been made in scalable Bayesian learning via stochastic approximation. However, Bayesian learning methods in distributed computing environments are often problem- or distributionspecific and use ad hoc techniques. We propose a novel general approach to Bayesian inference that is scalable and robust to corruption in the data. Our technique is based on the idea of splitting the data into several non-overlapping subgroups, evaluating the posterior distribution given each independent subgroup, and then combining the results. Our main contribution is the proposed aggregation step which is based on finding the geometric median of subset posterior distributions. Presented theoretical and numerical results confirm the advantages of our approach." @default.
- W62820921 created "2016-06-24" @default.
- W62820921 creator A5002768909 @default.
- W62820921 creator A5035506999 @default.
- W62820921 creator A5049124418 @default.
- W62820921 creator A5066307947 @default.
- W62820921 date "2014-06-21" @default.
- W62820921 modified "2023-10-11" @default.
- W62820921 title "Scalable and Robust Bayesian Inference via the Median Posterior" @default.
- W62820921 cites W1505731132 @default.
- W62820921 cites W1524012148 @default.
- W62820921 cites W1753414968 @default.
- W62820921 cites W1793048902 @default.
- W62820921 cites W1866929664 @default.
- W62820921 cites W1986280275 @default.
- W62820921 cites W2006707333 @default.
- W62820921 cites W2040324983 @default.
- W62820921 cites W2040641217 @default.
- W62820921 cites W2041517243 @default.
- W62820921 cites W2049469158 @default.
- W62820921 cites W2062532221 @default.
- W62820921 cites W2064379477 @default.
- W62820921 cites W2105777181 @default.
- W62820921 cites W2109181422 @default.
- W62820921 cites W2124331852 @default.
- W62820921 cites W2145536610 @default.
- W62820921 cites W2150582689 @default.
- W62820921 cites W2150695134 @default.
- W62820921 cites W2157963336 @default.
- W62820921 cites W2161340280 @default.
- W62820921 cites W2164278908 @default.
- W62820921 cites W2166384354 @default.
- W62820921 cites W2166851633 @default.
- W62820921 cites W2167433878 @default.
- W62820921 cites W2168947765 @default.
- W62820921 cites W2305001871 @default.
- W62820921 cites W2950212802 @default.
- W62820921 cites W2963881767 @default.
- W62820921 hasPublicationYear "2014" @default.
- W62820921 type Work @default.
- W62820921 sameAs 62820921 @default.
- W62820921 citedByCount "46" @default.
- W62820921 countsByYear W628209212014 @default.
- W62820921 countsByYear W628209212015 @default.
- W62820921 countsByYear W628209212016 @default.
- W62820921 countsByYear W628209212017 @default.
- W62820921 countsByYear W628209212018 @default.
- W62820921 countsByYear W628209212019 @default.
- W62820921 countsByYear W628209212020 @default.
- W62820921 countsByYear W628209212021 @default.
- W62820921 crossrefType "proceedings-article" @default.
- W62820921 hasAuthorship W62820921A5002768909 @default.
- W62820921 hasAuthorship W62820921A5035506999 @default.
- W62820921 hasAuthorship W62820921A5049124418 @default.
- W62820921 hasAuthorship W62820921A5066307947 @default.
- W62820921 hasConcept C101112237 @default.
- W62820921 hasConcept C107673813 @default.
- W62820921 hasConcept C119857082 @default.
- W62820921 hasConcept C124101348 @default.
- W62820921 hasConcept C149569020 @default.
- W62820921 hasConcept C154945302 @default.
- W62820921 hasConcept C160234255 @default.
- W62820921 hasConcept C2776214188 @default.
- W62820921 hasConcept C37903108 @default.
- W62820921 hasConcept C41008148 @default.
- W62820921 hasConcept C48044578 @default.
- W62820921 hasConcept C57830394 @default.
- W62820921 hasConcept C77088390 @default.
- W62820921 hasConcept C99173435 @default.
- W62820921 hasConceptScore W62820921C101112237 @default.
- W62820921 hasConceptScore W62820921C107673813 @default.
- W62820921 hasConceptScore W62820921C119857082 @default.
- W62820921 hasConceptScore W62820921C124101348 @default.
- W62820921 hasConceptScore W62820921C149569020 @default.
- W62820921 hasConceptScore W62820921C154945302 @default.
- W62820921 hasConceptScore W62820921C160234255 @default.
- W62820921 hasConceptScore W62820921C2776214188 @default.
- W62820921 hasConceptScore W62820921C37903108 @default.
- W62820921 hasConceptScore W62820921C41008148 @default.
- W62820921 hasConceptScore W62820921C48044578 @default.
- W62820921 hasConceptScore W62820921C57830394 @default.
- W62820921 hasConceptScore W62820921C77088390 @default.
- W62820921 hasConceptScore W62820921C99173435 @default.
- W62820921 hasLocation W628209211 @default.
- W62820921 hasOpenAccess W62820921 @default.
- W62820921 hasPrimaryLocation W628209211 @default.
- W62820921 hasRelatedWork W1565690085 @default.
- W62820921 hasRelatedWork W1624701674 @default.
- W62820921 hasRelatedWork W1816220470 @default.
- W62820921 hasRelatedWork W1866929664 @default.
- W62820921 hasRelatedWork W2059448777 @default.
- W62820921 hasRelatedWork W2091860746 @default.
- W62820921 hasRelatedWork W2102028181 @default.
- W62820921 hasRelatedWork W2115067168 @default.
- W62820921 hasRelatedWork W2128709328 @default.
- W62820921 hasRelatedWork W2133482456 @default.
- W62820921 hasRelatedWork W2138309709 @default.
- W62820921 hasRelatedWork W2145536610 @default.