Matches in SemOpenAlex for { <https://semopenalex.org/work/W62874552> ?p ?o ?g. }
- W62874552 abstract "Other people’s opinions are important piece of information for making informed decisions. Today the Web has become an excellent source of consumer opinions. However, as the volume of opinionated text is growing rapidly, it is getting impossible for users to read all reviews to make a good decision. Reading different and possibly even contradictory opinions written by different reviewers even make them more confused. In the same way, monitoring consumer opinions is getting harder for the manufactures and providers. These needs have inspired a new line of research on mining consumer reviews, or opinion mining. Aspect-based opinion mining, is a relatively new sub-problem that attracted a great deal of attention in the last few years. Extracted aspects and estimated ratings clearly provides more detailed information for users to make decisions and for suppliers to monitor their consumers. In this thesis, we address the problem of aspect-based opinion mining and seek novel methods to improve limitations and weaknesses of current techniques. We first propose a method, called Opinion Digger, that takes advantages of syntactic patterns to improve the accuracy of frequencybased techniques. We then move on to model-based approaches and propose an LDA-based model, called ILDA, to jointly extract aspects and estimate their ratings. In our next work, we compare ILDA with a series of increasingly sophisticated LDA models representing the essence of the major published methods in the literature. A comprehensive evaluation of these models indicates that while ILDA works best for items with large number of reviews, it performs poorly when the size of the training dataset is small, i.e., for cold start items. The cold start problem is critical as in real-life data sets around 90% of items are cold start. We address this problem in our last work and propose an LDA-based model, called FLDA. It models items and reviewers by a set of latent factors and learns them using reviews of an item category. Experimental results on real life data sets show that FLDA achieve significant gain for cold start items compared to the state-of-the-art models." @default.
- W62874552 created "2016-06-24" @default.
- W62874552 creator A5059571650 @default.
- W62874552 date "2013-03-22" @default.
- W62874552 modified "2023-09-27" @default.
- W62874552 title "Aspect-based opinion mining in online reviews" @default.
- W62874552 cites W125855469 @default.
- W62874552 cites W127363045 @default.
- W62874552 cites W132190833 @default.
- W62874552 cites W135700821 @default.
- W62874552 cites W147952312 @default.
- W62874552 cites W1484886461 @default.
- W62874552 cites W1506229096 @default.
- W62874552 cites W1506285740 @default.
- W62874552 cites W1508977358 @default.
- W62874552 cites W1512129890 @default.
- W62874552 cites W1515087027 @default.
- W62874552 cites W1536516100 @default.
- W62874552 cites W1544805753 @default.
- W62874552 cites W1545467275 @default.
- W62874552 cites W1549016832 @default.
- W62874552 cites W1576242567 @default.
- W62874552 cites W1576326591 @default.
- W62874552 cites W1578268952 @default.
- W62874552 cites W1581485226 @default.
- W62874552 cites W1585953746 @default.
- W62874552 cites W1588756676 @default.
- W62874552 cites W1588854568 @default.
- W62874552 cites W159038999 @default.
- W62874552 cites W1641039719 @default.
- W62874552 cites W1755776945 @default.
- W62874552 cites W177883861 @default.
- W62874552 cites W1854748950 @default.
- W62874552 cites W1859957297 @default.
- W62874552 cites W1876646890 @default.
- W62874552 cites W1880262756 @default.
- W62874552 cites W193524605 @default.
- W62874552 cites W1964613733 @default.
- W62874552 cites W1966632633 @default.
- W62874552 cites W1967274749 @default.
- W62874552 cites W1971889796 @default.
- W62874552 cites W1983758954 @default.
- W62874552 cites W1984900812 @default.
- W62874552 cites W1988931981 @default.
- W62874552 cites W1993077754 @default.
- W62874552 cites W1993233958 @default.
- W62874552 cites W1994361353 @default.
- W62874552 cites W1996509985 @default.
- W62874552 cites W1998257453 @default.
- W62874552 cites W1999180776 @default.
- W62874552 cites W1999681713 @default.
- W62874552 cites W2001587475 @default.
- W62874552 cites W2007427105 @default.
- W62874552 cites W2008070062 @default.
- W62874552 cites W2018650704 @default.
- W62874552 cites W2019207508 @default.
- W62874552 cites W2020842694 @default.
- W62874552 cites W2021093430 @default.
- W62874552 cites W2021366071 @default.
- W62874552 cites W2021579266 @default.
- W62874552 cites W2022204871 @default.
- W62874552 cites W2023817566 @default.
- W62874552 cites W2024430444 @default.
- W62874552 cites W2033403400 @default.
- W62874552 cites W2034090215 @default.
- W62874552 cites W2035265584 @default.
- W62874552 cites W2038721957 @default.
- W62874552 cites W2042297108 @default.
- W62874552 cites W2044429219 @default.
- W62874552 cites W2047676437 @default.
- W62874552 cites W2047756776 @default.
- W62874552 cites W2048658075 @default.
- W62874552 cites W2049633694 @default.
- W62874552 cites W2054141820 @default.
- W62874552 cites W2062020370 @default.
- W62874552 cites W2066191229 @default.
- W62874552 cites W2072644219 @default.
- W62874552 cites W2078813945 @default.
- W62874552 cites W2079770638 @default.
- W62874552 cites W2080320419 @default.
- W62874552 cites W2080558111 @default.
- W62874552 cites W2081375810 @default.
- W62874552 cites W2081795963 @default.
- W62874552 cites W2082398729 @default.
- W62874552 cites W2083305840 @default.
- W62874552 cites W2085750684 @default.
- W62874552 cites W2086277751 @default.
- W62874552 cites W2087294982 @default.
- W62874552 cites W2088622183 @default.
- W62874552 cites W2089124807 @default.
- W62874552 cites W2091430204 @default.
- W62874552 cites W2096110600 @default.
- W62874552 cites W2097214461 @default.
- W62874552 cites W2097726431 @default.
- W62874552 cites W2098018055 @default.
- W62874552 cites W2098136027 @default.
- W62874552 cites W2098162425 @default.
- W62874552 cites W2098647075 @default.
- W62874552 cites W2098717097 @default.
- W62874552 cites W2099283723 @default.