Matches in SemOpenAlex for { <https://semopenalex.org/work/W628993325> ?p ?o ?g. }
- W628993325 endingPage "308" @default.
- W628993325 startingPage "287" @default.
- W628993325 abstract "Process mining techniques aim to analyze and improve conformance and performance of processes using event data. Process discovery is the most prominent process-mining task: A process model is derived based on an event log. The process model should be able to capture causalities, choices, concurrency, and loops. Process discovery is very challenging because of trade-offs between fitness, simplicity, precision, and generalization. Note that event logs typically only hold example behavior and cannot be assumed to be complete (to avoid overfitting). Dozens of process discovery techniques have been proposed. These use a wide range of approaches, e.g., language- or state-based regions, genetic mining, heuristics, expectation maximization, iterative log-splitting, etc. When models or logs become too large for analysis, the event log may be automatically decomposed or traces may be clustered before discovery. Clustering and decomposition are done automatically, i.e., no additional information is used. This paper proposes a different approach where a localized event log is assumed. Events are localized by assigning a non-empty set of regions to each event. It is assumed that regions can only interact through shared events. Consider for example the mining of software systems. The events recorded typically explicitly refer to parts of the system (components, services, etc.). Currently, such information is ignored during discovery. However, references to system parts may be used to localize events. Also in other application domains, it is possible to localize events, e.g., communication events in an organization may refer to multiple departments (that may be seen as regions). This paper proposes a generic process discovery approach based on localized event logs. The approach has been implemented in ProM and experimental results show that location information indeed helps to improve the quality of the discovered models." @default.
- W628993325 created "2016-06-24" @default.
- W628993325 creator A5007068887 @default.
- W628993325 creator A5042548153 @default.
- W628993325 creator A5043739847 @default.
- W628993325 creator A5069762894 @default.
- W628993325 date "2015-01-01" @default.
- W628993325 modified "2023-10-01" @default.
- W628993325 title "Process Discovery Using Localized Events" @default.
- W628993325 cites W1507322398 @default.
- W628993325 cites W1508806467 @default.
- W628993325 cites W1524234654 @default.
- W628993325 cites W1531966656 @default.
- W628993325 cites W1575913973 @default.
- W628993325 cites W1578876701 @default.
- W628993325 cites W1592254591 @default.
- W628993325 cites W1910074535 @default.
- W628993325 cites W1943545449 @default.
- W628993325 cites W2004865374 @default.
- W628993325 cites W2059001796 @default.
- W628993325 cites W2098250644 @default.
- W628993325 cites W2100175929 @default.
- W628993325 cites W2102805256 @default.
- W628993325 cites W2103226467 @default.
- W628993325 cites W2111884963 @default.
- W628993325 cites W2116056094 @default.
- W628993325 cites W2126106085 @default.
- W628993325 cites W2149406428 @default.
- W628993325 cites W220604924 @default.
- W628993325 cites W2808171667 @default.
- W628993325 cites W4230145224 @default.
- W628993325 doi "https://doi.org/10.1007/978-3-319-19488-2_15" @default.
- W628993325 hasPublicationYear "2015" @default.
- W628993325 type Work @default.
- W628993325 sameAs 628993325 @default.
- W628993325 citedByCount "22" @default.
- W628993325 countsByYear W6289933252015 @default.
- W628993325 countsByYear W6289933252016 @default.
- W628993325 countsByYear W6289933252017 @default.
- W628993325 countsByYear W6289933252018 @default.
- W628993325 countsByYear W6289933252019 @default.
- W628993325 countsByYear W6289933252020 @default.
- W628993325 countsByYear W6289933252021 @default.
- W628993325 countsByYear W6289933252022 @default.
- W628993325 countsByYear W6289933252023 @default.
- W628993325 crossrefType "book-chapter" @default.
- W628993325 hasAuthorship W628993325A5007068887 @default.
- W628993325 hasAuthorship W628993325A5042548153 @default.
- W628993325 hasAuthorship W628993325A5043739847 @default.
- W628993325 hasAuthorship W628993325A5069762894 @default.
- W628993325 hasConcept C111919701 @default.
- W628993325 hasConcept C119857082 @default.
- W628993325 hasConcept C120567893 @default.
- W628993325 hasConcept C121332964 @default.
- W628993325 hasConcept C124101348 @default.
- W628993325 hasConcept C124670913 @default.
- W628993325 hasConcept C127705205 @default.
- W628993325 hasConcept C144133560 @default.
- W628993325 hasConcept C154945302 @default.
- W628993325 hasConcept C162853370 @default.
- W628993325 hasConcept C174998907 @default.
- W628993325 hasConcept C177264268 @default.
- W628993325 hasConcept C199360897 @default.
- W628993325 hasConcept C207505557 @default.
- W628993325 hasConcept C22019652 @default.
- W628993325 hasConcept C2779662365 @default.
- W628993325 hasConcept C41008148 @default.
- W628993325 hasConcept C50644808 @default.
- W628993325 hasConcept C62520636 @default.
- W628993325 hasConcept C73555534 @default.
- W628993325 hasConcept C80309976 @default.
- W628993325 hasConcept C85345410 @default.
- W628993325 hasConcept C93453677 @default.
- W628993325 hasConcept C98045186 @default.
- W628993325 hasConceptScore W628993325C111919701 @default.
- W628993325 hasConceptScore W628993325C119857082 @default.
- W628993325 hasConceptScore W628993325C120567893 @default.
- W628993325 hasConceptScore W628993325C121332964 @default.
- W628993325 hasConceptScore W628993325C124101348 @default.
- W628993325 hasConceptScore W628993325C124670913 @default.
- W628993325 hasConceptScore W628993325C127705205 @default.
- W628993325 hasConceptScore W628993325C144133560 @default.
- W628993325 hasConceptScore W628993325C154945302 @default.
- W628993325 hasConceptScore W628993325C162853370 @default.
- W628993325 hasConceptScore W628993325C174998907 @default.
- W628993325 hasConceptScore W628993325C177264268 @default.
- W628993325 hasConceptScore W628993325C199360897 @default.
- W628993325 hasConceptScore W628993325C207505557 @default.
- W628993325 hasConceptScore W628993325C22019652 @default.
- W628993325 hasConceptScore W628993325C2779662365 @default.
- W628993325 hasConceptScore W628993325C41008148 @default.
- W628993325 hasConceptScore W628993325C50644808 @default.
- W628993325 hasConceptScore W628993325C62520636 @default.
- W628993325 hasConceptScore W628993325C73555534 @default.
- W628993325 hasConceptScore W628993325C80309976 @default.
- W628993325 hasConceptScore W628993325C85345410 @default.
- W628993325 hasConceptScore W628993325C93453677 @default.
- W628993325 hasConceptScore W628993325C98045186 @default.