Matches in SemOpenAlex for { <https://semopenalex.org/work/W63024763> ?p ?o ?g. }
- W63024763 endingPage "1189" @default.
- W63024763 startingPage "1181" @default.
- W63024763 abstract "Aggregations of sensed data are very important for users to get summary information about monitored area in applications of wireless sensor networks (WSNs). As the approximate aggregation results are enough for users to perform analysis and make decisions, many approximate aggregation algorithms are proposed for WSNs. However, most of the algorithms have fixed error bounds and cannot meet arbitrary precision requirement, the uniform sampling based algorithm which can reach arbitrary precision is just suitable for the static networks. Considering the dynamic property of WSNs, in this paper, we propose an approximate aggregation algorithm based on Bernoulli sampling to satisfy arbitrary precision requirement. Besides, two adaptive algorithms are also proposed, one is for adapting the sample with varying of precision requirement, the other is for adapting the sample with varying of sensed data. The theoretical analysis and experiment results show that the proposed algorithms have high performance in terms of accuracy and energy consumption." @default.
- W63024763 created "2016-06-24" @default.
- W63024763 creator A5018389659 @default.
- W63024763 creator A5030095512 @default.
- W63024763 creator A5043815322 @default.
- W63024763 creator A5070314143 @default.
- W63024763 date "2010-03-14" @default.
- W63024763 modified "2023-09-22" @default.
- W63024763 title "Bernoulli sampling based (ε, δ)-approximate aggregation in large-scale sensor networks" @default.
- W63024763 cites W1571469688 @default.
- W63024763 cites W1595409123 @default.
- W63024763 cites W1603054560 @default.
- W63024763 cites W1992363839 @default.
- W63024763 cites W2029685080 @default.
- W63024763 cites W2059632502 @default.
- W63024763 cites W2103662601 @default.
- W63024763 cites W2107851624 @default.
- W63024763 cites W2117197113 @default.
- W63024763 cites W2126310747 @default.
- W63024763 cites W2132328536 @default.
- W63024763 cites W2134743705 @default.
- W63024763 cites W2141540383 @default.
- W63024763 cites W2144072407 @default.
- W63024763 cites W2147350215 @default.
- W63024763 cites W2147667339 @default.
- W63024763 cites W2153160273 @default.
- W63024763 cites W2153259545 @default.
- W63024763 cites W2168720188 @default.
- W63024763 hasPublicationYear "2010" @default.
- W63024763 type Work @default.
- W63024763 sameAs 63024763 @default.
- W63024763 citedByCount "16" @default.
- W63024763 countsByYear W630247632012 @default.
- W63024763 countsByYear W630247632013 @default.
- W63024763 countsByYear W630247632014 @default.
- W63024763 countsByYear W630247632015 @default.
- W63024763 countsByYear W630247632018 @default.
- W63024763 countsByYear W630247632019 @default.
- W63024763 crossrefType "proceedings-article" @default.
- W63024763 hasAuthorship W63024763A5018389659 @default.
- W63024763 hasAuthorship W63024763A5030095512 @default.
- W63024763 hasAuthorship W63024763A5043815322 @default.
- W63024763 hasAuthorship W63024763A5070314143 @default.
- W63024763 hasConcept C105795698 @default.
- W63024763 hasConcept C111472728 @default.
- W63024763 hasConcept C11413529 @default.
- W63024763 hasConcept C121332964 @default.
- W63024763 hasConcept C127413603 @default.
- W63024763 hasConcept C138885662 @default.
- W63024763 hasConcept C140779682 @default.
- W63024763 hasConcept C146978453 @default.
- W63024763 hasConcept C152361515 @default.
- W63024763 hasConcept C185592680 @default.
- W63024763 hasConcept C186370098 @default.
- W63024763 hasConcept C18903297 @default.
- W63024763 hasConcept C189950617 @default.
- W63024763 hasConcept C19499675 @default.
- W63024763 hasConcept C198531522 @default.
- W63024763 hasConcept C24590314 @default.
- W63024763 hasConcept C2778755073 @default.
- W63024763 hasConcept C2780165032 @default.
- W63024763 hasConcept C2781395549 @default.
- W63024763 hasConcept C31258907 @default.
- W63024763 hasConcept C33923547 @default.
- W63024763 hasConcept C41008148 @default.
- W63024763 hasConcept C43617362 @default.
- W63024763 hasConcept C62520636 @default.
- W63024763 hasConcept C76155785 @default.
- W63024763 hasConcept C79403827 @default.
- W63024763 hasConcept C82578977 @default.
- W63024763 hasConcept C86803240 @default.
- W63024763 hasConcept C94915269 @default.
- W63024763 hasConceptScore W63024763C105795698 @default.
- W63024763 hasConceptScore W63024763C111472728 @default.
- W63024763 hasConceptScore W63024763C11413529 @default.
- W63024763 hasConceptScore W63024763C121332964 @default.
- W63024763 hasConceptScore W63024763C127413603 @default.
- W63024763 hasConceptScore W63024763C138885662 @default.
- W63024763 hasConceptScore W63024763C140779682 @default.
- W63024763 hasConceptScore W63024763C146978453 @default.
- W63024763 hasConceptScore W63024763C152361515 @default.
- W63024763 hasConceptScore W63024763C185592680 @default.
- W63024763 hasConceptScore W63024763C186370098 @default.
- W63024763 hasConceptScore W63024763C18903297 @default.
- W63024763 hasConceptScore W63024763C189950617 @default.
- W63024763 hasConceptScore W63024763C19499675 @default.
- W63024763 hasConceptScore W63024763C198531522 @default.
- W63024763 hasConceptScore W63024763C24590314 @default.
- W63024763 hasConceptScore W63024763C2778755073 @default.
- W63024763 hasConceptScore W63024763C2780165032 @default.
- W63024763 hasConceptScore W63024763C2781395549 @default.
- W63024763 hasConceptScore W63024763C31258907 @default.
- W63024763 hasConceptScore W63024763C33923547 @default.
- W63024763 hasConceptScore W63024763C41008148 @default.
- W63024763 hasConceptScore W63024763C43617362 @default.
- W63024763 hasConceptScore W63024763C62520636 @default.
- W63024763 hasConceptScore W63024763C76155785 @default.
- W63024763 hasConceptScore W63024763C79403827 @default.