Matches in SemOpenAlex for { <https://semopenalex.org/work/W63119667> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W63119667 endingPage "432" @default.
- W63119667 startingPage "425" @default.
- W63119667 abstract "Medical Knowledge Sharing System can be extremely beneficial for people living in isolated communities and remote regions. Association rule is a very important Knowledge form. Finding these valuable rules from brain images is a significant research topic in the field of data mining. Discovering frequent itemsets is the key process in association rule mining. Traditional association rule algorithms adopt an iterative method which requires large amount of calculation. In this paper, we proposed a new algorithm which based on association graph and matrix (GMA) pruning to reduce the amount of candidate itemsets. Experimental results show that our algorithm is more efficient for different values of minimum support." @default.
- W63119667 created "2016-06-24" @default.
- W63119667 creator A5012682887 @default.
- W63119667 creator A5013527762 @default.
- W63119667 creator A5017033819 @default.
- W63119667 creator A5040424329 @default.
- W63119667 creator A5054472031 @default.
- W63119667 date "2012-01-01" @default.
- W63119667 modified "2023-10-14" @default.
- W63119667 title "GMA: An Approach for Association Rules Mining on Medical Images" @default.
- W63119667 cites W1978387271 @default.
- W63119667 cites W2020549068 @default.
- W63119667 cites W2064853889 @default.
- W63119667 cites W2083415359 @default.
- W63119667 cites W2100406636 @default.
- W63119667 cites W2120299328 @default.
- W63119667 doi "https://doi.org/10.1007/978-3-642-31576-3_54" @default.
- W63119667 hasPublicationYear "2012" @default.
- W63119667 type Work @default.
- W63119667 sameAs 63119667 @default.
- W63119667 citedByCount "3" @default.
- W63119667 countsByYear W631196672015 @default.
- W63119667 crossrefType "book-chapter" @default.
- W63119667 hasAuthorship W63119667A5012682887 @default.
- W63119667 hasAuthorship W63119667A5013527762 @default.
- W63119667 hasAuthorship W63119667A5017033819 @default.
- W63119667 hasAuthorship W63119667A5040424329 @default.
- W63119667 hasAuthorship W63119667A5054472031 @default.
- W63119667 hasConcept C124101348 @default.
- W63119667 hasConcept C142853389 @default.
- W63119667 hasConcept C154945302 @default.
- W63119667 hasConcept C15744967 @default.
- W63119667 hasConcept C193524817 @default.
- W63119667 hasConcept C41008148 @default.
- W63119667 hasConcept C542102704 @default.
- W63119667 hasConceptScore W63119667C124101348 @default.
- W63119667 hasConceptScore W63119667C142853389 @default.
- W63119667 hasConceptScore W63119667C154945302 @default.
- W63119667 hasConceptScore W63119667C15744967 @default.
- W63119667 hasConceptScore W63119667C193524817 @default.
- W63119667 hasConceptScore W63119667C41008148 @default.
- W63119667 hasConceptScore W63119667C542102704 @default.
- W63119667 hasLocation W631196671 @default.
- W63119667 hasOpenAccess W63119667 @default.
- W63119667 hasPrimaryLocation W631196671 @default.
- W63119667 hasRelatedWork W1969663039 @default.
- W63119667 hasRelatedWork W1996525798 @default.
- W63119667 hasRelatedWork W2062234344 @default.
- W63119667 hasRelatedWork W2335877035 @default.
- W63119667 hasRelatedWork W2347219288 @default.
- W63119667 hasRelatedWork W2348097614 @default.
- W63119667 hasRelatedWork W2352422906 @default.
- W63119667 hasRelatedWork W2381899740 @default.
- W63119667 hasRelatedWork W2383003961 @default.
- W63119667 hasRelatedWork W2408152870 @default.
- W63119667 isParatext "false" @default.
- W63119667 isRetracted "false" @default.
- W63119667 magId "63119667" @default.
- W63119667 workType "book-chapter" @default.