Matches in SemOpenAlex for { <https://semopenalex.org/work/W632617008> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W632617008 abstract "Data mining approaches have been increasingly used in recent years in order to find patterns and regularities in large databases. In this study, the C4.5 decision tree approach was used for mining of Gene Logic database, containing biological data. The decision tree approach was used in order to identify the most relevant genes and risk factors involved in breast cancer, in order to separate healthy patients from breast cancer patients in the data sets used. Four different tests were performed for this purpose. Cross validation was performed, for each of the four tests, in order to evaluate the capacity of the decision tree approaches in correctly classifying ‘new’ samples. In the first test, the expression of 108 breast related genes, shown in appendix A, for 75 patients were used as input to the C4.5 algorithm. This test resulted in a decision tree containing only four genes considered to be the most relevant in order to correctly classify patients. Cross validation indicates an average accuracy of 89% in classifying ‘new’ samples. In the second test, risk factor data was used as input. The cross validation result shows an average accuracy of 87% in classifying ‘new’ samples. In the third test, both gene expression data and risk factor data were put together as one input. The cross validation procedure for this approach again indicates an average accuracy of 87% in classifying ‘new’ samples. In the final test, the C4.5 algorithm was used in order to indicate possible signalling pathways involving the four genes identified by the decision tree based on only gene expression data. In some of cases, the C4.5 algorithm found trees suggesting pathways which are supported by the breast cancer literature. Since not all pathways involving the four putative breast cancer genes are known yet, the other suggested pathways should be further analyzed in order to increase their credibility. In summary, this study demonstrates the application of decision tree approaches for the identification of genes and risk factors relevant for the classification of breast cancer patients" @default.
- W632617008 created "2016-06-24" @default.
- W632617008 creator A5039003995 @default.
- W632617008 date "2002-01-01" @default.
- W632617008 modified "2023-09-26" @default.
- W632617008 title "Data Mining with Decision Trees in the Gene Logic Database : A Breast Cancer Study" @default.
- W632617008 cites W1601529450 @default.
- W632617008 cites W1727290854 @default.
- W632617008 cites W1966280301 @default.
- W632617008 cites W2022518765 @default.
- W632617008 cites W2124633824 @default.
- W632617008 hasPublicationYear "2002" @default.
- W632617008 type Work @default.
- W632617008 sameAs 632617008 @default.
- W632617008 citedByCount "0" @default.
- W632617008 crossrefType "journal-article" @default.
- W632617008 hasAuthorship W632617008A5039003995 @default.
- W632617008 hasConcept C113174947 @default.
- W632617008 hasConcept C119857082 @default.
- W632617008 hasConcept C121608353 @default.
- W632617008 hasConcept C124101348 @default.
- W632617008 hasConcept C126322002 @default.
- W632617008 hasConcept C134306372 @default.
- W632617008 hasConcept C154945302 @default.
- W632617008 hasConcept C27181475 @default.
- W632617008 hasConcept C33923547 @default.
- W632617008 hasConcept C41008148 @default.
- W632617008 hasConcept C530470458 @default.
- W632617008 hasConcept C5481197 @default.
- W632617008 hasConcept C71924100 @default.
- W632617008 hasConcept C77088390 @default.
- W632617008 hasConcept C84525736 @default.
- W632617008 hasConceptScore W632617008C113174947 @default.
- W632617008 hasConceptScore W632617008C119857082 @default.
- W632617008 hasConceptScore W632617008C121608353 @default.
- W632617008 hasConceptScore W632617008C124101348 @default.
- W632617008 hasConceptScore W632617008C126322002 @default.
- W632617008 hasConceptScore W632617008C134306372 @default.
- W632617008 hasConceptScore W632617008C154945302 @default.
- W632617008 hasConceptScore W632617008C27181475 @default.
- W632617008 hasConceptScore W632617008C33923547 @default.
- W632617008 hasConceptScore W632617008C41008148 @default.
- W632617008 hasConceptScore W632617008C530470458 @default.
- W632617008 hasConceptScore W632617008C5481197 @default.
- W632617008 hasConceptScore W632617008C71924100 @default.
- W632617008 hasConceptScore W632617008C77088390 @default.
- W632617008 hasConceptScore W632617008C84525736 @default.
- W632617008 hasLocation W6326170081 @default.
- W632617008 hasOpenAccess W632617008 @default.
- W632617008 hasPrimaryLocation W6326170081 @default.
- W632617008 hasRelatedWork W1487447453 @default.
- W632617008 hasRelatedWork W1738839103 @default.
- W632617008 hasRelatedWork W1846373564 @default.
- W632617008 hasRelatedWork W2012009763 @default.
- W632617008 hasRelatedWork W2065038455 @default.
- W632617008 hasRelatedWork W2094391863 @default.
- W632617008 hasRelatedWork W2111618184 @default.
- W632617008 hasRelatedWork W2136272383 @default.
- W632617008 hasRelatedWork W2145813479 @default.
- W632617008 hasRelatedWork W2153144823 @default.
- W632617008 hasRelatedWork W2160516484 @default.
- W632617008 hasRelatedWork W2182560683 @default.
- W632617008 hasRelatedWork W2185812947 @default.
- W632617008 hasRelatedWork W2296521202 @default.
- W632617008 hasRelatedWork W2341656249 @default.
- W632617008 hasRelatedWork W2898330565 @default.
- W632617008 hasRelatedWork W2943349236 @default.
- W632617008 hasRelatedWork W2998304121 @default.
- W632617008 hasRelatedWork W3092957444 @default.
- W632617008 hasRelatedWork W1977726754 @default.
- W632617008 isParatext "false" @default.
- W632617008 isRetracted "false" @default.
- W632617008 magId "632617008" @default.
- W632617008 workType "article" @default.