Matches in SemOpenAlex for { <https://semopenalex.org/work/W635952814> ?p ?o ?g. }
- W635952814 endingPage "238" @default.
- W635952814 startingPage "222" @default.
- W635952814 abstract "Abstract Economic growth is often based on the intensification of crop production, energy consumption and urbanization. In many cases, this leads to the degradation of aquatic ecosystems. Modelling water resources and the related identification of key drivers of change are essential to improve and protect water quality in river basins. This study evaluates the potential of Bayesian belief network models to predict the ecological water quality in a typical multifunctional and tropical river basin. Field data, expert knowledge and literature data were used to develop a set of Bayesian belief network models. The developed models were evaluated based on weighted Cohen's Kappa (κw), percentage of correctly classified instances (CCI) and spherical payoff. On top, a sensitivity analysis and practical simulation tests of the two most reliable models were performed. Cross-validation based on κw (Model 1: 0.44 ± 0.08; Model 2: 0.44 ± 0.11) and CCI (Model 1: 36.3 ± 2.3; Model 2: 41.6 ± 2.3) indicated that the performance was reliable and stable. Model 1 comprised of input variables main land use, elevation, sediment type, chlorophyll, flow velocity, dissolved oxygen, and chemical oxygen demand; whereas Model 2 did not include dissolved oxygen and chemical oxygen demand. Although the predictive performance of Model 2 was slightly higher than that of Model 1, simulation outcomes of Model 1 were more coherent. Additionally, more management options could be evaluated with Model 1. As the model's ability to simulate management outcomes is of utmost importance in model selection, Model 1 is recommended as a tool to support decision-making in river management. Model predictions and sensitivity analysis indicated that flow velocity is the major variable determining ecological water quality and suggested that construction of additional dams and water abstraction within the basin would have an adverse effect on water quality. Although a case study in a single river basin is presented, the modelling approach can be of general use on any other river basin." @default.
- W635952814 created "2016-06-24" @default.
- W635952814 creator A5005593936 @default.
- W635952814 creator A5005898961 @default.
- W635952814 creator A5006453398 @default.
- W635952814 creator A5014637492 @default.
- W635952814 creator A5017585430 @default.
- W635952814 creator A5038748021 @default.
- W635952814 creator A5057936795 @default.
- W635952814 creator A5063618622 @default.
- W635952814 creator A5065809873 @default.
- W635952814 creator A5075145035 @default.
- W635952814 creator A5084479931 @default.
- W635952814 date "2015-09-01" @default.
- W635952814 modified "2023-10-13" @default.
- W635952814 title "Bayesian belief network models to analyse and predict ecological water quality in rivers" @default.
- W635952814 cites W1607854336 @default.
- W635952814 cites W1961645563 @default.
- W635952814 cites W1965197372 @default.
- W635952814 cites W1971309476 @default.
- W635952814 cites W1973107043 @default.
- W635952814 cites W1983436597 @default.
- W635952814 cites W1987838348 @default.
- W635952814 cites W1989589546 @default.
- W635952814 cites W1993179908 @default.
- W635952814 cites W1998728412 @default.
- W635952814 cites W1998753381 @default.
- W635952814 cites W2001391324 @default.
- W635952814 cites W2003577742 @default.
- W635952814 cites W2005801573 @default.
- W635952814 cites W2007644030 @default.
- W635952814 cites W2008300836 @default.
- W635952814 cites W2010117660 @default.
- W635952814 cites W2015645153 @default.
- W635952814 cites W2018342642 @default.
- W635952814 cites W2024343098 @default.
- W635952814 cites W2026604626 @default.
- W635952814 cites W2027855222 @default.
- W635952814 cites W2037789405 @default.
- W635952814 cites W2045993962 @default.
- W635952814 cites W2047066496 @default.
- W635952814 cites W2047575372 @default.
- W635952814 cites W2047581137 @default.
- W635952814 cites W2047951970 @default.
- W635952814 cites W2048076161 @default.
- W635952814 cites W2049872392 @default.
- W635952814 cites W2050998616 @default.
- W635952814 cites W2052541293 @default.
- W635952814 cites W2053988025 @default.
- W635952814 cites W2055839838 @default.
- W635952814 cites W2057767905 @default.
- W635952814 cites W2061160575 @default.
- W635952814 cites W2069584658 @default.
- W635952814 cites W2069976783 @default.
- W635952814 cites W2072777669 @default.
- W635952814 cites W2076182842 @default.
- W635952814 cites W2079087023 @default.
- W635952814 cites W2085070331 @default.
- W635952814 cites W2085246860 @default.
- W635952814 cites W2087825127 @default.
- W635952814 cites W2089215939 @default.
- W635952814 cites W2090625733 @default.
- W635952814 cites W2116238262 @default.
- W635952814 cites W2116345859 @default.
- W635952814 cites W2120160157 @default.
- W635952814 cites W2121551382 @default.
- W635952814 cites W2123218771 @default.
- W635952814 cites W2125016935 @default.
- W635952814 cites W2129667088 @default.
- W635952814 cites W2130089609 @default.
- W635952814 cites W2130654613 @default.
- W635952814 cites W2133012565 @default.
- W635952814 cites W2134867585 @default.
- W635952814 cites W2140527957 @default.
- W635952814 cites W2148534043 @default.
- W635952814 cites W2150798249 @default.
- W635952814 cites W2155522897 @default.
- W635952814 cites W2155537464 @default.
- W635952814 cites W2158776864 @default.
- W635952814 cites W2160961956 @default.
- W635952814 cites W2171979263 @default.
- W635952814 cites W2176090776 @default.
- W635952814 cites W2505053915 @default.
- W635952814 cites W4292080463 @default.
- W635952814 cites W52211652 @default.
- W635952814 doi "https://doi.org/10.1016/j.ecolmodel.2015.05.025" @default.
- W635952814 hasPublicationYear "2015" @default.
- W635952814 type Work @default.
- W635952814 sameAs 635952814 @default.
- W635952814 citedByCount "56" @default.
- W635952814 countsByYear W6359528142016 @default.
- W635952814 countsByYear W6359528142017 @default.
- W635952814 countsByYear W6359528142018 @default.
- W635952814 countsByYear W6359528142019 @default.
- W635952814 countsByYear W6359528142020 @default.
- W635952814 countsByYear W6359528142021 @default.
- W635952814 countsByYear W6359528142022 @default.
- W635952814 countsByYear W6359528142023 @default.