Matches in SemOpenAlex for { <https://semopenalex.org/work/W638779095> ?p ?o ?g. }
- W638779095 abstract "This research studies how to e ciently predict optimal active constraints of an inequality constrained optimization problem, in the context of Interior Point Methods (ipms). We propose a framework based on shifting/perturbing the inequality constraints of the problem. Despite being a class of powerful tools for solving Linear Programming (lp) problems, ipms are well-known to encounter di culties with active-set prediction due essentially to their construction. When applied to an inequality constrained optimization problem, ipms generate iterates that belong to the interior of the set determined by the constraints, thus avoiding/ignoring the combinatorial aspect of the solution. This comes at the cost of di culty in predicting the optimal active constraints that would enable termination, as well as increasing ill-conditioning of the solution process. We show that, existing techniques for active-set prediction, however, su↵er from di culties in making an accurate prediction at the early stage of the iterative process of ipms; when these techniques are ready to yield an accurate prediction towards the end of a run, as the iterates approach the solution set, the ipms have to solve increasingly ill-conditioned and hence di cult, subproblems. To address this challenging question, we propose the use of controlled perturbations. Namely, in the context of lp problems, we consider perturbing the inequality constraints (by a small amount) so as to enlarge the feasible set. We show that if the perturbations are chosen judiciously, the solution of the original problem lies on or close to the central path of the perturbed problem. We solve the resulting perturbed problem(s) using a path-following ipm while predicting on the way the active set of the original lp problem; we find that our approach is able to accurately predict the optimal active set of the original problem before the duality gap for the perturbed problem gets too small. Furthermore, depending on problem conditioning, this prediction can happen sooner than predicting the active set for the perturbed problem or for the original one if no perturbations are used. Proof-of-concept algorithms are presented and encouraging preliminary numerical experience is also reported when comparing activity prediction for the perturbed and unperturbed problem formulations. We also extend the idea of using controlled perturbations to enhance the capabilities of optimal active-set prediction for ipms for convex Quadratic Programming (qp) problems. qp problems share many properties of lp, and based on these properties, some results require more care; furthermore, encouraging preliminary numerical experience is also presented for the qp case." @default.
- W638779095 created "2016-06-24" @default.
- W638779095 creator A5041395379 @default.
- W638779095 date "2015-07-01" @default.
- W638779095 modified "2023-09-25" @default.
- W638779095 title "Active-set prediction for interior point methods" @default.
- W638779095 cites W1490853808 @default.
- W638779095 cites W1509110311 @default.
- W638779095 cites W1509805685 @default.
- W638779095 cites W1518039036 @default.
- W638779095 cites W1522295867 @default.
- W638779095 cites W1523709528 @default.
- W638779095 cites W1533868172 @default.
- W638779095 cites W1571051474 @default.
- W638779095 cites W1572181325 @default.
- W638779095 cites W1573409602 @default.
- W638779095 cites W1574951568 @default.
- W638779095 cites W1590472748 @default.
- W638779095 cites W161404398 @default.
- W638779095 cites W1786620475 @default.
- W638779095 cites W1963547452 @default.
- W638779095 cites W1966629740 @default.
- W638779095 cites W1968077632 @default.
- W638779095 cites W1969594194 @default.
- W638779095 cites W1969974549 @default.
- W638779095 cites W1970065252 @default.
- W638779095 cites W1970687372 @default.
- W638779095 cites W1972223440 @default.
- W638779095 cites W1973117121 @default.
- W638779095 cites W1973431552 @default.
- W638779095 cites W1974421881 @default.
- W638779095 cites W1977531475 @default.
- W638779095 cites W1978115826 @default.
- W638779095 cites W1978125723 @default.
- W638779095 cites W1981315194 @default.
- W638779095 cites W1984633545 @default.
- W638779095 cites W1984862813 @default.
- W638779095 cites W1987953347 @default.
- W638779095 cites W1989894100 @default.
- W638779095 cites W1992386684 @default.
- W638779095 cites W1992975148 @default.
- W638779095 cites W1996525837 @default.
- W638779095 cites W2000151369 @default.
- W638779095 cites W2000930544 @default.
- W638779095 cites W2003137566 @default.
- W638779095 cites W2006884874 @default.
- W638779095 cites W2007161401 @default.
- W638779095 cites W2008063657 @default.
- W638779095 cites W2009629085 @default.
- W638779095 cites W2014746566 @default.
- W638779095 cites W2014885585 @default.
- W638779095 cites W2014944169 @default.
- W638779095 cites W2022683391 @default.
- W638779095 cites W2026079992 @default.
- W638779095 cites W2027826061 @default.
- W638779095 cites W2027907985 @default.
- W638779095 cites W2030490984 @default.
- W638779095 cites W2030674458 @default.
- W638779095 cites W2031494345 @default.
- W638779095 cites W2033040247 @default.
- W638779095 cites W2033368599 @default.
- W638779095 cites W2033794497 @default.
- W638779095 cites W2039400631 @default.
- W638779095 cites W2041563548 @default.
- W638779095 cites W2042360648 @default.
- W638779095 cites W2044265095 @default.
- W638779095 cites W2045867632 @default.
- W638779095 cites W2049219350 @default.
- W638779095 cites W2050897335 @default.
- W638779095 cites W2052510704 @default.
- W638779095 cites W2055008743 @default.
- W638779095 cites W2061558948 @default.
- W638779095 cites W2063176644 @default.
- W638779095 cites W2063753743 @default.
- W638779095 cites W2066443208 @default.
- W638779095 cites W2067791548 @default.
- W638779095 cites W2068484625 @default.
- W638779095 cites W2068531154 @default.
- W638779095 cites W2069426496 @default.
- W638779095 cites W2070426678 @default.
- W638779095 cites W2071011182 @default.
- W638779095 cites W2071563913 @default.
- W638779095 cites W2071846104 @default.
- W638779095 cites W2072430489 @default.
- W638779095 cites W2074316151 @default.
- W638779095 cites W2075194837 @default.
- W638779095 cites W2077658674 @default.
- W638779095 cites W2079232806 @default.
- W638779095 cites W2082451773 @default.
- W638779095 cites W2082907018 @default.
- W638779095 cites W2085548605 @default.
- W638779095 cites W2086708593 @default.
- W638779095 cites W2086867325 @default.
- W638779095 cites W2088109187 @default.
- W638779095 cites W2088118089 @default.
- W638779095 cites W2088241859 @default.
- W638779095 cites W2089103219 @default.
- W638779095 cites W2089389443 @default.
- W638779095 cites W2094435468 @default.
- W638779095 cites W2111885254 @default.