Matches in SemOpenAlex for { <https://semopenalex.org/work/W63923496> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W63923496 abstract "ABSTRACT: Advances in software and hardware technologies in many-core graphics processing units (GPU) create new opportunities to accelerate computational turn-around time of computa-tional fluid dynamics (CFD) simulations for wind engineering applications, where rapid simula-tions can make a tremendous impact on the current practice. We investigate the computational performance of a GPU-accelerated incompressible Navier-Stokes solver for 3D flows (GIN3D) for complex terrain simulations on multi-GPU desktop platforms and on the recently deployed NCSA Lincoln Tesla Cluster. Our results demonstrate the potential of GPU computing to accele-rate complex terrain wind forecasting applications. 1 INTRODUCTION Detailed knowledge of meteorological conditions (e.g. winds, temperature, moisture and turbu-lence fluctuations) in complex terrain and urban domains are becoming increasingly important in weather forecasting, wind energy, homeland security and defense applications. In many applica-tions short-term forecasts for domains that range from 1-2 km to 10-20 km in the horizontal plane are needed. Surface-layer parameterizations in meso-scale models may not directly apply to micro-scale applications in the atmospheric boundary layer because of the scale-dependent as-sumptions inherent in the physical models. Therefore, there has been an interest in application of engineering CFD models to micro-scale atmospheric boundary layer events. However, engineer-ing CFD models appear to be computationally expensive because they are designed to be appli-cable to a variety of problems (aerodynamics, two-phase flows, combustion etc.). For these rea-sons, there is a need to develop a computationally fast micro-scale complex terrain CFD model for short-term wind forecasting. With recent developments in many-core computing hardware, this task appears to be realizable as we discuss next. GPUs have emerged as general-purpose many-core computing platforms that can substantially accelerate compute-intensive applications in various domains (Owens et al. 2007, 2008). Modern GPUs provide memory bandwidth and floating-point performances that are orders of magnitude faster than conventional central processing units (CPU). For instance, NVIDIA Tesla C1060 GPU provides a memory bandwidth of 102 GB/s and almost a teraFLOPS (floating point opera-tions per seconds) of single precision floating-point peak performance through 240 cores distri-buted over 30 multiprocessors. The most recent Fermi architecture from NVIDIA is based on 512 cores with error correcting codes (ECC) on memory. Today, four graphics processing units can be installed on a single motherboard to build a" @default.
- W63923496 created "2016-06-24" @default.
- W63923496 creator A5044916867 @default.
- W63923496 creator A5064341989 @default.
- W63923496 date "2010-01-01" @default.
- W63923496 modified "2023-09-27" @default.
- W63923496 title "Acceleration of Complex Terrain Wind Predictions using Many-core Computing Hardware" @default.
- W63923496 cites W1983771518 @default.
- W63923496 cites W2006382715 @default.
- W63923496 cites W2027829941 @default.
- W63923496 cites W2032309817 @default.
- W63923496 cites W2034384480 @default.
- W63923496 cites W2076077791 @default.
- W63923496 cites W2108157916 @default.
- W63923496 cites W2108266785 @default.
- W63923496 cites W2163798155 @default.
- W63923496 cites W2182152759 @default.
- W63923496 cites W2295862081 @default.
- W63923496 cites W2333521678 @default.
- W63923496 cites W3087399931 @default.
- W63923496 cites W812710960 @default.
- W63923496 hasPublicationYear "2010" @default.
- W63923496 type Work @default.
- W63923496 sameAs 63923496 @default.
- W63923496 citedByCount "0" @default.
- W63923496 crossrefType "journal-article" @default.
- W63923496 hasAuthorship W63923496A5044916867 @default.
- W63923496 hasAuthorship W63923496A5064341989 @default.
- W63923496 hasConcept C121332964 @default.
- W63923496 hasConcept C127413603 @default.
- W63923496 hasConcept C13393347 @default.
- W63923496 hasConcept C146978453 @default.
- W63923496 hasConcept C153294291 @default.
- W63923496 hasConcept C161840515 @default.
- W63923496 hasConcept C1633027 @default.
- W63923496 hasConcept C18903297 @default.
- W63923496 hasConcept C199360897 @default.
- W63923496 hasConcept C21001229 @default.
- W63923496 hasConcept C2778755073 @default.
- W63923496 hasConcept C2778770139 @default.
- W63923496 hasConcept C41008148 @default.
- W63923496 hasConcept C44154836 @default.
- W63923496 hasConcept C459310 @default.
- W63923496 hasConcept C62520636 @default.
- W63923496 hasConcept C86803240 @default.
- W63923496 hasConceptScore W63923496C121332964 @default.
- W63923496 hasConceptScore W63923496C127413603 @default.
- W63923496 hasConceptScore W63923496C13393347 @default.
- W63923496 hasConceptScore W63923496C146978453 @default.
- W63923496 hasConceptScore W63923496C153294291 @default.
- W63923496 hasConceptScore W63923496C161840515 @default.
- W63923496 hasConceptScore W63923496C1633027 @default.
- W63923496 hasConceptScore W63923496C18903297 @default.
- W63923496 hasConceptScore W63923496C199360897 @default.
- W63923496 hasConceptScore W63923496C21001229 @default.
- W63923496 hasConceptScore W63923496C2778755073 @default.
- W63923496 hasConceptScore W63923496C2778770139 @default.
- W63923496 hasConceptScore W63923496C41008148 @default.
- W63923496 hasConceptScore W63923496C44154836 @default.
- W63923496 hasConceptScore W63923496C459310 @default.
- W63923496 hasConceptScore W63923496C62520636 @default.
- W63923496 hasConceptScore W63923496C86803240 @default.
- W63923496 hasLocation W639234961 @default.
- W63923496 hasOpenAccess W63923496 @default.
- W63923496 hasPrimaryLocation W639234961 @default.
- W63923496 hasRelatedWork W1524340214 @default.
- W63923496 hasRelatedWork W1964485196 @default.
- W63923496 hasRelatedWork W1991880959 @default.
- W63923496 hasRelatedWork W1996445122 @default.
- W63923496 hasRelatedWork W1996873051 @default.
- W63923496 hasRelatedWork W1998911653 @default.
- W63923496 hasRelatedWork W2011207802 @default.
- W63923496 hasRelatedWork W2011959898 @default.
- W63923496 hasRelatedWork W2014336664 @default.
- W63923496 hasRelatedWork W2028361891 @default.
- W63923496 hasRelatedWork W2042986360 @default.
- W63923496 hasRelatedWork W2059472464 @default.
- W63923496 hasRelatedWork W2061682039 @default.
- W63923496 hasRelatedWork W2092166318 @default.
- W63923496 hasRelatedWork W2286217581 @default.
- W63923496 hasRelatedWork W2388998334 @default.
- W63923496 hasRelatedWork W2787983988 @default.
- W63923496 hasRelatedWork W3174510556 @default.
- W63923496 hasRelatedWork W3184964307 @default.
- W63923496 hasRelatedWork W349307874 @default.
- W63923496 isParatext "false" @default.
- W63923496 isRetracted "false" @default.
- W63923496 magId "63923496" @default.
- W63923496 workType "article" @default.