Matches in SemOpenAlex for { <https://semopenalex.org/work/W63929124> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W63929124 abstract "This paper is devoted to the study of the $ell$-adic representations of the absolute Galois group $G$ of ${mathbb Q}_p$, $pgeq 5$, associated to an elliptic curve over ${mathbb Q}_p$, as $ell$ runs through the set of all prime numbers (including $ell =p$, in which case we use the theory of potentially semi-stable $p$-adic representations). For each prime $ell$, we give the complete list of isomorphism classes of ${mathbb Q}_{ell}[G]$-modules coming from an elliptic curve over ${mathbb Q}_p$, that is, those which are isomorphic to the Tate module of an elliptic curve over ${mathbb Q}_p$. The $ell =p$ case is the more delicate. It requires studying the liftings of a given elliptic curve over ${mathbb F}_p$ to an elliptic scheme over the ring of integers of a totally ramified finite extension of ${mathbb Q}_p$, and combining it with a descent theorem providing a Galois criterion for an elliptic curve having good reduction over a $p$-adic field to be defined over a closed subfield. This enables us to state necessary and sufficient conditions for an $ell$-adic representation of $G$ to come from an elliptic curve over ${mathbb Q}_p$, for each prime $ell$." @default.
- W63929124 created "2016-06-24" @default.
- W63929124 creator A5013633401 @default.
- W63929124 date "2000-07-13" @default.
- W63929124 modified "2023-09-27" @default.
- W63929124 title "Les repr'esentations ell-adiques associ'ees aux courbes elliptiques sur Q_p" @default.
- W63929124 cites W1545876477 @default.
- W63929124 cites W1601582954 @default.
- W63929124 cites W1981295999 @default.
- W63929124 cites W204821808 @default.
- W63929124 cites W2061107511 @default.
- W63929124 cites W2076178640 @default.
- W63929124 cites W2087736116 @default.
- W63929124 cites W2088557582 @default.
- W63929124 cites W2327208976 @default.
- W63929124 cites W2603665914 @default.
- W63929124 cites W60108140 @default.
- W63929124 cites W2328908680 @default.
- W63929124 hasPublicationYear "2000" @default.
- W63929124 type Work @default.
- W63929124 sameAs 63929124 @default.
- W63929124 citedByCount "0" @default.
- W63929124 crossrefType "posted-content" @default.
- W63929124 hasAuthorship W63929124A5013633401 @default.
- W63929124 hasConcept C114614502 @default.
- W63929124 hasConcept C115624301 @default.
- W63929124 hasConcept C118615104 @default.
- W63929124 hasConcept C12657307 @default.
- W63929124 hasConcept C145899342 @default.
- W63929124 hasConcept C157567686 @default.
- W63929124 hasConcept C179603306 @default.
- W63929124 hasConcept C184992742 @default.
- W63929124 hasConcept C185592680 @default.
- W63929124 hasConcept C202444582 @default.
- W63929124 hasConcept C203436722 @default.
- W63929124 hasConcept C33923547 @default.
- W63929124 hasConcept C8010536 @default.
- W63929124 hasConceptScore W63929124C114614502 @default.
- W63929124 hasConceptScore W63929124C115624301 @default.
- W63929124 hasConceptScore W63929124C118615104 @default.
- W63929124 hasConceptScore W63929124C12657307 @default.
- W63929124 hasConceptScore W63929124C145899342 @default.
- W63929124 hasConceptScore W63929124C157567686 @default.
- W63929124 hasConceptScore W63929124C179603306 @default.
- W63929124 hasConceptScore W63929124C184992742 @default.
- W63929124 hasConceptScore W63929124C185592680 @default.
- W63929124 hasConceptScore W63929124C202444582 @default.
- W63929124 hasConceptScore W63929124C203436722 @default.
- W63929124 hasConceptScore W63929124C33923547 @default.
- W63929124 hasConceptScore W63929124C8010536 @default.
- W63929124 hasLocation W639291241 @default.
- W63929124 hasOpenAccess W63929124 @default.
- W63929124 hasPrimaryLocation W639291241 @default.
- W63929124 isParatext "false" @default.
- W63929124 isRetracted "false" @default.
- W63929124 magId "63929124" @default.
- W63929124 workType "article" @default.