Matches in SemOpenAlex for { <https://semopenalex.org/work/W63973286> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W63973286 endingPage "1371" @default.
- W63973286 startingPage "1371" @default.
- W63973286 abstract "Bayesian networks (Pearl 1988), which provide a compact graphical way to express complex probabilistic relationships among several random variables, are rapidly becoming the tool of choice for dealing with uncertainty in knowledge based systems. Amongst the many advantages offered by Bayesian networks over other representations such as decision trees and neural networks are the ease of comprehensibility to humans, effectiveness as complex decision making models and elicitability of informative prior distributions. However, approaches based on Bayesian networks have often been dismissed as unfit for many real-world applications because they are difficult to construct and probabilistic inference is intractable for most problems of realistic size. Given the increasing availability of large amounts of data in most domains, learning of Bayesian networks from data can circumvent the first problem. This research deals primarily with the second problem. We address this issue by learning selective Bayesian networks a variant of the Bayesian network that uses only a subset of the given attributes to model a domain. Our aim is to learn networks that are smaller, and hence computationally simpler to evaluate, but display accuracy comparable to that of networks induced using all attributes. We have developed two methods for inducing selective Bayesian networks from data. The first method, K2-AS (Singh & Provan 1995), selects a subset of attributes that maximizes predictive accuracy prior to the network learning phase.The idea behind this approach is that attributes which have little or no influence on the accuracy of learned networks can be discarded without significantly affecting their performance. The second method we have developed, InfoAS (Singh & Provan 1996), uses information-theoretic metrics to efficiently select a subset of attributes from which to learn the classifier. The aim is to discard those attributes which can give us little or no information about the class variable, given the other attributes in the network. We have showed that relative to networks learned using all attributes, networks learned by both K2-AS and Info-AS are significantly smaller and computationally simpler to evaluate but display comparable predictive accuracy. More-" @default.
- W63973286 created "2016-06-24" @default.
- W63973286 creator A5037536909 @default.
- W63973286 date "1996-08-04" @default.
- W63973286 modified "2023-09-24" @default.
- W63973286 title "Induction of selective Bayesian networks from data" @default.
- W63973286 cites W14420165 @default.
- W63973286 cites W1599577651 @default.
- W63973286 cites W2159080219 @default.
- W63973286 hasPublicationYear "1996" @default.
- W63973286 type Work @default.
- W63973286 sameAs 63973286 @default.
- W63973286 citedByCount "2" @default.
- W63973286 crossrefType "proceedings-article" @default.
- W63973286 hasAuthorship W63973286A5037536909 @default.
- W63973286 hasConcept C107673813 @default.
- W63973286 hasConcept C119857082 @default.
- W63973286 hasConcept C124101348 @default.
- W63973286 hasConcept C154945302 @default.
- W63973286 hasConcept C155846161 @default.
- W63973286 hasConcept C160234255 @default.
- W63973286 hasConcept C207685749 @default.
- W63973286 hasConcept C2776214188 @default.
- W63973286 hasConcept C33724603 @default.
- W63973286 hasConcept C41008148 @default.
- W63973286 hasConcept C49937458 @default.
- W63973286 hasConcept C50644808 @default.
- W63973286 hasConcept C71983512 @default.
- W63973286 hasConceptScore W63973286C107673813 @default.
- W63973286 hasConceptScore W63973286C119857082 @default.
- W63973286 hasConceptScore W63973286C124101348 @default.
- W63973286 hasConceptScore W63973286C154945302 @default.
- W63973286 hasConceptScore W63973286C155846161 @default.
- W63973286 hasConceptScore W63973286C160234255 @default.
- W63973286 hasConceptScore W63973286C207685749 @default.
- W63973286 hasConceptScore W63973286C2776214188 @default.
- W63973286 hasConceptScore W63973286C33724603 @default.
- W63973286 hasConceptScore W63973286C41008148 @default.
- W63973286 hasConceptScore W63973286C49937458 @default.
- W63973286 hasConceptScore W63973286C50644808 @default.
- W63973286 hasConceptScore W63973286C71983512 @default.
- W63973286 hasLocation W639732861 @default.
- W63973286 hasOpenAccess W63973286 @default.
- W63973286 hasPrimaryLocation W639732861 @default.
- W63973286 hasRelatedWork W116987408 @default.
- W63973286 hasRelatedWork W117452745 @default.
- W63973286 hasRelatedWork W1483936050 @default.
- W63973286 hasRelatedWork W1541148257 @default.
- W63973286 hasRelatedWork W1595195151 @default.
- W63973286 hasRelatedWork W185009585 @default.
- W63973286 hasRelatedWork W185620535 @default.
- W63973286 hasRelatedWork W2031490401 @default.
- W63973286 hasRelatedWork W2158103806 @default.
- W63973286 hasRelatedWork W2233807614 @default.
- W63973286 hasRelatedWork W2236244207 @default.
- W63973286 hasRelatedWork W2911666059 @default.
- W63973286 hasRelatedWork W2963627453 @default.
- W63973286 hasRelatedWork W296604820 @default.
- W63973286 hasRelatedWork W2971751269 @default.
- W63973286 hasRelatedWork W2985695769 @default.
- W63973286 hasRelatedWork W2991198773 @default.
- W63973286 hasRelatedWork W2992140536 @default.
- W63973286 hasRelatedWork W3176505142 @default.
- W63973286 hasRelatedWork W628282490 @default.
- W63973286 isParatext "false" @default.
- W63973286 isRetracted "false" @default.
- W63973286 magId "63973286" @default.
- W63973286 workType "article" @default.