Matches in SemOpenAlex for { <https://semopenalex.org/work/W640969877> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W640969877 endingPage "276" @default.
- W640969877 startingPage "271" @default.
- W640969877 abstract "Precision achieved by stochastic sampling algorithms for Bayesian networks typically deteriorates in the face of extremely unlikely evidence. In addressing this problem, importance sampling algorithms seem to be most successful. We discuss the principles underlying the importance sampling algorithms in Bayesian networks. After that, we describe Evidence Pre-propagation Importance Sampling (EPIS-BN), an importance sampling algorithm that computes an importance function using two techniques: loopy belief propagation [K. Murphy, Y. Weiss, M. Jordan, Loopy belief propagation for approximate inference: An empirical study, in: Proceedings of the Fifteenth Annual Conference on Uncertainty in Artificial Intelligence, UAI-99, San Francisco, CA, Morgan Kaufmann Publishers, 1999, pp. 467-475; Y. Weiss, Correctness of local probability propagation in graphical models with loops, Neural Computation 12 (1) (2000) 1-41] and @e-cutoff heuristic [J. Cheng, M.J. Druzdzel, BN-AIS: An adaptive importance sampling algorithm for evidential reasoning in large Bayesian networks, Journal of Artificial Intelligence Research 13 (2000) 155-188]. We tested the performance of EPIS-BN on three large real Bayesian networks and observed that on all three networks it outperforms AIS-BN [J. Cheng, M.J. Druzdzel, BN-AIS: An adaptive importance sampling algorithm for evidential reasoning in large Bayesian networks, Journal of Artificial Intelligence Research 13 (2000) 155-188], the current state-of-the-art algorithm, while avoiding its costly learning stage. We also compared EPIS-BN Gibbs sampling and discuss the role of the @e-cutoff heuristic in importance sampling for Bayesian networks. networks." @default.
- W640969877 created "2016-06-24" @default.
- W640969877 creator A5005313203 @default.
- W640969877 creator A5066611124 @default.
- W640969877 date "2007-01-01" @default.
- W640969877 modified "2023-09-26" @default.
- W640969877 title "Importance sampling algorithms for Bayesian networks: Principles and performance" @default.
- W640969877 hasPublicationYear "2007" @default.
- W640969877 type Work @default.
- W640969877 sameAs 640969877 @default.
- W640969877 citedByCount "0" @default.
- W640969877 crossrefType "journal-article" @default.
- W640969877 hasAuthorship W640969877A5005313203 @default.
- W640969877 hasAuthorship W640969877A5066611124 @default.
- W640969877 hasConcept C105795698 @default.
- W640969877 hasConcept C106131492 @default.
- W640969877 hasConcept C107673813 @default.
- W640969877 hasConcept C111350023 @default.
- W640969877 hasConcept C11413529 @default.
- W640969877 hasConcept C119857082 @default.
- W640969877 hasConcept C140779682 @default.
- W640969877 hasConcept C154945302 @default.
- W640969877 hasConcept C158424031 @default.
- W640969877 hasConcept C160234255 @default.
- W640969877 hasConcept C173801870 @default.
- W640969877 hasConcept C19499675 @default.
- W640969877 hasConcept C204693719 @default.
- W640969877 hasConcept C31972630 @default.
- W640969877 hasConcept C33724603 @default.
- W640969877 hasConcept C33923547 @default.
- W640969877 hasConcept C41008148 @default.
- W640969877 hasConcept C52740198 @default.
- W640969877 hasConcept C71983512 @default.
- W640969877 hasConcept C73602740 @default.
- W640969877 hasConceptScore W640969877C105795698 @default.
- W640969877 hasConceptScore W640969877C106131492 @default.
- W640969877 hasConceptScore W640969877C107673813 @default.
- W640969877 hasConceptScore W640969877C111350023 @default.
- W640969877 hasConceptScore W640969877C11413529 @default.
- W640969877 hasConceptScore W640969877C119857082 @default.
- W640969877 hasConceptScore W640969877C140779682 @default.
- W640969877 hasConceptScore W640969877C154945302 @default.
- W640969877 hasConceptScore W640969877C158424031 @default.
- W640969877 hasConceptScore W640969877C160234255 @default.
- W640969877 hasConceptScore W640969877C173801870 @default.
- W640969877 hasConceptScore W640969877C19499675 @default.
- W640969877 hasConceptScore W640969877C204693719 @default.
- W640969877 hasConceptScore W640969877C31972630 @default.
- W640969877 hasConceptScore W640969877C33724603 @default.
- W640969877 hasConceptScore W640969877C33923547 @default.
- W640969877 hasConceptScore W640969877C41008148 @default.
- W640969877 hasConceptScore W640969877C52740198 @default.
- W640969877 hasConceptScore W640969877C71983512 @default.
- W640969877 hasConceptScore W640969877C73602740 @default.
- W640969877 hasIssue "3" @default.
- W640969877 hasLocation W6409698771 @default.
- W640969877 hasOpenAccess W640969877 @default.
- W640969877 hasPrimaryLocation W6409698771 @default.
- W640969877 hasRelatedWork W1526990002 @default.
- W640969877 hasRelatedWork W1551931549 @default.
- W640969877 hasRelatedWork W1564773553 @default.
- W640969877 hasRelatedWork W1594839921 @default.
- W640969877 hasRelatedWork W1978543350 @default.
- W640969877 hasRelatedWork W1988138371 @default.
- W640969877 hasRelatedWork W1991255919 @default.
- W640969877 hasRelatedWork W2012465962 @default.
- W640969877 hasRelatedWork W2035252527 @default.
- W640969877 hasRelatedWork W2096030104 @default.
- W640969877 hasRelatedWork W2133722387 @default.
- W640969877 hasRelatedWork W2148493499 @default.
- W640969877 hasRelatedWork W2326372119 @default.
- W640969877 hasRelatedWork W2379077901 @default.
- W640969877 hasRelatedWork W2384166280 @default.
- W640969877 hasRelatedWork W3083548991 @default.
- W640969877 hasRelatedWork W3105307699 @default.
- W640969877 hasRelatedWork W3176417267 @default.
- W640969877 hasRelatedWork W655197271 @default.
- W640969877 hasRelatedWork W65886597 @default.
- W640969877 hasVolume "52" @default.
- W640969877 isParatext "false" @default.
- W640969877 isRetracted "false" @default.
- W640969877 magId "640969877" @default.
- W640969877 workType "article" @default.