Matches in SemOpenAlex for { <https://semopenalex.org/work/W64189834> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W64189834 abstract "Considering the inherent characteristics of RBF network structure, a hybrid intelligent algorithm based on hierarchical encoding strategy is proposed in this paper. This method takes LSM based on singular value decomposition to optimize the linear weights, take hierarchic genetic algorithm, which combined with Gauss–Newton descend search, immune characteristics and chaos idea, to optimize the RBF network structure and hidden layer parameters. Simulation results demonstrate it is effective and superior to some other methods." @default.
- W64189834 created "2016-06-24" @default.
- W64189834 creator A5049134685 @default.
- W64189834 date "2012-01-01" @default.
- W64189834 modified "2023-09-23" @default.
- W64189834 title "Hybrid Intelligent Algorithm Based on Hierarchical Encoding for Training of RBF Neural Network" @default.
- W64189834 cites W1995234002 @default.
- W64189834 cites W2005311222 @default.
- W64189834 cites W2058271794 @default.
- W64189834 cites W2078094465 @default.
- W64189834 cites W2101791369 @default.
- W64189834 cites W2104317024 @default.
- W64189834 doi "https://doi.org/10.1007/978-1-4614-2185-6_33" @default.
- W64189834 hasPublicationYear "2012" @default.
- W64189834 type Work @default.
- W64189834 sameAs 64189834 @default.
- W64189834 citedByCount "0" @default.
- W64189834 crossrefType "book-chapter" @default.
- W64189834 hasAuthorship W64189834A5049134685 @default.
- W64189834 hasConcept C11413529 @default.
- W64189834 hasConcept C119857082 @default.
- W64189834 hasConcept C125411270 @default.
- W64189834 hasConcept C153180895 @default.
- W64189834 hasConcept C154945302 @default.
- W64189834 hasConcept C182016430 @default.
- W64189834 hasConcept C41008148 @default.
- W64189834 hasConcept C50644808 @default.
- W64189834 hasConcept C8880873 @default.
- W64189834 hasConcept C98856871 @default.
- W64189834 hasConceptScore W64189834C11413529 @default.
- W64189834 hasConceptScore W64189834C119857082 @default.
- W64189834 hasConceptScore W64189834C125411270 @default.
- W64189834 hasConceptScore W64189834C153180895 @default.
- W64189834 hasConceptScore W64189834C154945302 @default.
- W64189834 hasConceptScore W64189834C182016430 @default.
- W64189834 hasConceptScore W64189834C41008148 @default.
- W64189834 hasConceptScore W64189834C50644808 @default.
- W64189834 hasConceptScore W64189834C8880873 @default.
- W64189834 hasConceptScore W64189834C98856871 @default.
- W64189834 hasLocation W641898341 @default.
- W64189834 hasOpenAccess W64189834 @default.
- W64189834 hasPrimaryLocation W641898341 @default.
- W64189834 hasRelatedWork W2008836933 @default.
- W64189834 hasRelatedWork W2041484886 @default.
- W64189834 hasRelatedWork W2059535497 @default.
- W64189834 hasRelatedWork W2077797915 @default.
- W64189834 hasRelatedWork W2116688834 @default.
- W64189834 hasRelatedWork W2157734794 @default.
- W64189834 hasRelatedWork W2350615751 @default.
- W64189834 hasRelatedWork W2353886639 @default.
- W64189834 hasRelatedWork W2357587365 @default.
- W64189834 hasRelatedWork W2359415906 @default.
- W64189834 hasRelatedWork W2369295553 @default.
- W64189834 hasRelatedWork W2372943125 @default.
- W64189834 hasRelatedWork W2373690103 @default.
- W64189834 hasRelatedWork W2384567672 @default.
- W64189834 hasRelatedWork W2388574701 @default.
- W64189834 hasRelatedWork W2388838687 @default.
- W64189834 hasRelatedWork W241118217 @default.
- W64189834 hasRelatedWork W2403233683 @default.
- W64189834 hasRelatedWork W3017996837 @default.
- W64189834 hasRelatedWork W3027854830 @default.
- W64189834 isParatext "false" @default.
- W64189834 isRetracted "false" @default.
- W64189834 magId "64189834" @default.
- W64189834 workType "book-chapter" @default.