Matches in SemOpenAlex for { <https://semopenalex.org/work/W642294890> ?p ?o ?g. }
- W642294890 abstract "The purpose of this thesis is to develop a general methodology for the analysis of continuously sampled data from open populations. The thesis consists of four parts and one appendix. The four parts may be read independently of each other. The appendix consists of a submitted article based on the developments in Part III.The aim of Part I is to present the major contributions to the mark-recapture methodology over the last century. It is not a complete reference to the subject, but gives the reader an introduction to mark-recapture models. In addition to the classic models, some recent development of interest is included. The introduction of Bayesian statistics to mark-recapture models is covered, in addition to the analysis of continuously sampled data from closed populations. With the ever increasing amount of models available, the need for model selection tools is grave. We look at some of the most used methods such as the Likelihood Ratio Test (LRT) and the Akaike Information Criterion in connection with mark-recapture models. For the Bayesian models, we review some of the latest developments in model selection such as the Deviance Information Criterion.Part II addresses the challenge of analysing a set of continuously sampled markrecapture data from a Norwegian coastal cod population (the Risor data set). These data are already analysed with discrete models by Julliard et al. (2001), but it is suggested that this approach may lead to biased estimates of the survival. The approach taken in Part II is to renounce the discrete models for mark-recapture data, and to develop an new, continuous model. The analysis of this model is preformed by a Monte Carlo EM algorithm. The survival and capture estimates are presented and compared with the estimates of Julliard et al. (2001). The Risor data set contains much auxilliary information such as size at release and capture, release location and capture gear. A semi-parametric multiplicative hazard model is implemented to include some of this information.The EM algorithm from Part II is developed further in Part III. Instead of a Monte Carlo simulation in the E step of the algorithm, an analytic solution is presented. The algorithm is developed for the discrete Cormack-Jolly-Seber(CJS) model, and shows nice convergence and stability properties for this model. An argument is then given for applying the CJS model directly to continuous data. The stability of the EM algorithm makes it suitable for such analysis. When covariate information is to be included into the analysis of continuous data, the CJS model is no longer appropriate. A semi-parametric multiplicative model for the survial and capture processes is presented as an answer to this challenge. The EM algorithm is still used for analysis. The methodology is applied to a set of continuously sampled data on the Eurpean Dipper, gathered by G. Marzolin (Marzolin (2002)). These data have been analysed discretely by Lebreton et al. (1992) (frequentistic) and by Brooks et al. (2000) (Bayesian).One of the assumptions of the CJS model is that the sampling is done instantaneously. The aim of Part IV is to assess the consequences of violating this assumption. A simulation analysis showes that there is potential for substantial bias of the survival estimates when the sampling periods are long." @default.
- W642294890 created "2016-06-24" @default.
- W642294890 creator A5035287782 @default.
- W642294890 date "2006-01-01" @default.
- W642294890 modified "2023-09-23" @default.
- W642294890 title "The Analysis of Continuous Mark-Recapture Data" @default.
- W642294890 cites W1964104682 @default.
- W642294890 cites W1966964711 @default.
- W642294890 cites W1971103630 @default.
- W642294890 cites W1976247018 @default.
- W642294890 cites W1985093013 @default.
- W642294890 cites W1985112723 @default.
- W642294890 cites W1986151546 @default.
- W642294890 cites W1995945562 @default.
- W642294890 cites W1995994041 @default.
- W642294890 cites W1998487261 @default.
- W642294890 cites W2001672032 @default.
- W642294890 cites W2001862417 @default.
- W642294890 cites W2004458492 @default.
- W642294890 cites W2011418498 @default.
- W642294890 cites W2018404680 @default.
- W642294890 cites W2030895949 @default.
- W642294890 cites W2032421424 @default.
- W642294890 cites W2036226479 @default.
- W642294890 cites W2044881087 @default.
- W642294890 cites W2057765075 @default.
- W642294890 cites W2069235510 @default.
- W642294890 cites W2070632060 @default.
- W642294890 cites W2076657070 @default.
- W642294890 cites W2084279011 @default.
- W642294890 cites W2084644495 @default.
- W642294890 cites W2105518356 @default.
- W642294890 cites W2106706098 @default.
- W642294890 cites W2108713420 @default.
- W642294890 cites W2116290666 @default.
- W642294890 cites W2133371793 @default.
- W642294890 cites W2134112289 @default.
- W642294890 cites W2163942609 @default.
- W642294890 cites W2259003680 @default.
- W642294890 cites W2259310861 @default.
- W642294890 cites W2262954636 @default.
- W642294890 cites W2319384619 @default.
- W642294890 cites W2324736730 @default.
- W642294890 cites W2326196429 @default.
- W642294890 cites W2330476251 @default.
- W642294890 cites W2333357124 @default.
- W642294890 cites W2767905780 @default.
- W642294890 cites W619032326 @default.
- W642294890 cites W95266807 @default.
- W642294890 cites W2072634211 @default.
- W642294890 hasPublicationYear "2006" @default.
- W642294890 type Work @default.
- W642294890 sameAs 642294890 @default.
- W642294890 citedByCount "1" @default.
- W642294890 countsByYear W6422948902012 @default.
- W642294890 crossrefType "dissertation" @default.
- W642294890 hasAuthorship W642294890A5035287782 @default.
- W642294890 hasConcept C105795698 @default.
- W642294890 hasConcept C107673813 @default.
- W642294890 hasConcept C126674687 @default.
- W642294890 hasConcept C144024400 @default.
- W642294890 hasConcept C149782125 @default.
- W642294890 hasConcept C149923435 @default.
- W642294890 hasConcept C154945302 @default.
- W642294890 hasConcept C160234255 @default.
- W642294890 hasConcept C168136583 @default.
- W642294890 hasConcept C17634605 @default.
- W642294890 hasConcept C177599991 @default.
- W642294890 hasConcept C205649164 @default.
- W642294890 hasConcept C2908647359 @default.
- W642294890 hasConcept C33923547 @default.
- W642294890 hasConcept C36528806 @default.
- W642294890 hasConcept C41008148 @default.
- W642294890 hasConcept C81917197 @default.
- W642294890 hasConcept C9357733 @default.
- W642294890 hasConcept C93959086 @default.
- W642294890 hasConceptScore W642294890C105795698 @default.
- W642294890 hasConceptScore W642294890C107673813 @default.
- W642294890 hasConceptScore W642294890C126674687 @default.
- W642294890 hasConceptScore W642294890C144024400 @default.
- W642294890 hasConceptScore W642294890C149782125 @default.
- W642294890 hasConceptScore W642294890C149923435 @default.
- W642294890 hasConceptScore W642294890C154945302 @default.
- W642294890 hasConceptScore W642294890C160234255 @default.
- W642294890 hasConceptScore W642294890C168136583 @default.
- W642294890 hasConceptScore W642294890C17634605 @default.
- W642294890 hasConceptScore W642294890C177599991 @default.
- W642294890 hasConceptScore W642294890C205649164 @default.
- W642294890 hasConceptScore W642294890C2908647359 @default.
- W642294890 hasConceptScore W642294890C33923547 @default.
- W642294890 hasConceptScore W642294890C36528806 @default.
- W642294890 hasConceptScore W642294890C41008148 @default.
- W642294890 hasConceptScore W642294890C81917197 @default.
- W642294890 hasConceptScore W642294890C9357733 @default.
- W642294890 hasConceptScore W642294890C93959086 @default.
- W642294890 hasLocation W6422948901 @default.
- W642294890 hasOpenAccess W642294890 @default.
- W642294890 hasPrimaryLocation W6422948901 @default.
- W642294890 hasRelatedWork W1604616549 @default.
- W642294890 hasRelatedWork W1998215067 @default.