Matches in SemOpenAlex for { <https://semopenalex.org/work/W64335235> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W64335235 abstract "Stochastic approximation is one of the oldest approaches for solving stochastic optimization problems. In the first part of the dissertation, we study the convergence and asymptotic normality of a generalized form of stochastic approximation algorithm with deterministic perturbation sequences. Both one-simulation and two-simulation methods are considered. Assuming a special structure on the deterministic sequence, we establish sufficient conditions on the noise sequence for a.s. convergence of the algorithm and asymptotic normality. Finally we propose ideas for further research in analysis and design of the deterministic perturbation sequences. In the second part of the dissertation, we consider the application of stochastic optimization problems to American option pricing, a challenging task, particularly for high-dimensional underlying securities. For options where there are a finite number of exercise dates, we present a weighted stochastic mesh method that only requires some easy-to-verify assumptions and a method to simulate the behavior of underlying securities. The algorithm provides point estimates and confidence intervals for both price and value-at-risk. The estimators converge to the true values as the computational effort increases. In the third part, we deal with an optimization problem in the field of ranking and selection. We generalize the discussion in the literature to a non-Gaussian correlated distribution setting. We propose a procedure to locate an approximate solution, which can be shown to converge to the true solution asymptotically. The convergence rate is also provided for the Gaussian setting." @default.
- W64335235 created "2016-06-24" @default.
- W64335235 creator A5000889975 @default.
- W64335235 creator A5064562354 @default.
- W64335235 date "2005-01-01" @default.
- W64335235 modified "2023-09-23" @default.
- W64335235 title "Stochastic optimization: algorithms and convergence results" @default.
- W64335235 hasPublicationYear "2005" @default.
- W64335235 type Work @default.
- W64335235 sameAs 64335235 @default.
- W64335235 citedByCount "0" @default.
- W64335235 crossrefType "journal-article" @default.
- W64335235 hasAuthorship W64335235A5000889975 @default.
- W64335235 hasAuthorship W64335235A5064562354 @default.
- W64335235 hasConcept C105795698 @default.
- W64335235 hasConcept C11413529 @default.
- W64335235 hasConcept C121332964 @default.
- W64335235 hasConcept C126255220 @default.
- W64335235 hasConcept C163716315 @default.
- W64335235 hasConcept C185429906 @default.
- W64335235 hasConcept C194387892 @default.
- W64335235 hasConcept C26517878 @default.
- W64335235 hasConcept C2778112365 @default.
- W64335235 hasConcept C28826006 @default.
- W64335235 hasConcept C33923547 @default.
- W64335235 hasConcept C38652104 @default.
- W64335235 hasConcept C41008148 @default.
- W64335235 hasConcept C54355233 @default.
- W64335235 hasConcept C55479107 @default.
- W64335235 hasConcept C57869625 @default.
- W64335235 hasConcept C62520636 @default.
- W64335235 hasConcept C65778772 @default.
- W64335235 hasConcept C86803240 @default.
- W64335235 hasConceptScore W64335235C105795698 @default.
- W64335235 hasConceptScore W64335235C11413529 @default.
- W64335235 hasConceptScore W64335235C121332964 @default.
- W64335235 hasConceptScore W64335235C126255220 @default.
- W64335235 hasConceptScore W64335235C163716315 @default.
- W64335235 hasConceptScore W64335235C185429906 @default.
- W64335235 hasConceptScore W64335235C194387892 @default.
- W64335235 hasConceptScore W64335235C26517878 @default.
- W64335235 hasConceptScore W64335235C2778112365 @default.
- W64335235 hasConceptScore W64335235C28826006 @default.
- W64335235 hasConceptScore W64335235C33923547 @default.
- W64335235 hasConceptScore W64335235C38652104 @default.
- W64335235 hasConceptScore W64335235C41008148 @default.
- W64335235 hasConceptScore W64335235C54355233 @default.
- W64335235 hasConceptScore W64335235C55479107 @default.
- W64335235 hasConceptScore W64335235C57869625 @default.
- W64335235 hasConceptScore W64335235C62520636 @default.
- W64335235 hasConceptScore W64335235C65778772 @default.
- W64335235 hasConceptScore W64335235C86803240 @default.
- W64335235 hasLocation W643352351 @default.
- W64335235 hasOpenAccess W64335235 @default.
- W64335235 hasPrimaryLocation W643352351 @default.
- W64335235 hasRelatedWork W1560937769 @default.
- W64335235 hasRelatedWork W1920681660 @default.
- W64335235 hasRelatedWork W1996962424 @default.
- W64335235 hasRelatedWork W2070403440 @default.
- W64335235 hasRelatedWork W2098840904 @default.
- W64335235 hasRelatedWork W2106983679 @default.
- W64335235 hasRelatedWork W2124167738 @default.
- W64335235 hasRelatedWork W2133653810 @default.
- W64335235 hasRelatedWork W2378664622 @default.
- W64335235 hasRelatedWork W2729848051 @default.
- W64335235 hasRelatedWork W2887181124 @default.
- W64335235 hasRelatedWork W2896520257 @default.
- W64335235 hasRelatedWork W3041957046 @default.
- W64335235 hasRelatedWork W3121423254 @default.
- W64335235 hasRelatedWork W3130318025 @default.
- W64335235 hasRelatedWork W3134671887 @default.
- W64335235 hasRelatedWork W391462639 @default.
- W64335235 hasRelatedWork W568117459 @default.
- W64335235 hasRelatedWork W77532971 @default.
- W64335235 hasRelatedWork W84146095 @default.
- W64335235 isParatext "false" @default.
- W64335235 isRetracted "false" @default.
- W64335235 magId "64335235" @default.
- W64335235 workType "article" @default.