Matches in SemOpenAlex for { <https://semopenalex.org/work/W644077498> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W644077498 abstract "Land clearing detection at the state level in Australia has largely been the province of governments because of the considerable expense, expertise, sustained duration of activities and staffing levels needed. State Governments responsible for mapping woody vegetation change release mapping results several years after the clearing has occurred, are at Ministerial discretion and there is no guarantee they will continue being made public. This makes it imperative to develop capacity to detect land clearing independently. Hence, the main objective of this research project was to develop and apply a robust and rapid woody vegetation change detection approach using publically available computing capabilities and data. This was done using the Google Earth Engine, and two selected Landsat scenes, in the Brigalow Belt and Mulga Lands biogeographic regions in Queensland, Australia, where land clearing is known to have occurred. Validated woody vegetation clearing data were available for the study sites from 2004-2010. Four change detection approaches were investigated using the Google Earth Engine Application Programming Interface: (1) visual identification of areas of presumptive clearing, used to train change detection algorithms in GEE and then extrapolate a detection model across the scenes of interest; (2) CART and Random Forest classifiers trained using existing validated woody vegetation clearing information for different time epochs; (3) a normalised time-series of NDVI mean and standard deviation values combined with a spectral index; and (4) a normalised time-series of Foliage Projective Cover (FPC) mean and standard deviation values combined with a spectral index. The initial research shows that the CART and Random Forest classifiers produced the highest mapping accuracies (user’s and producer’s accuracies of clearing were 77-92% and 54-77%, respectively) when detecting woody vegetation change between 2004 and 2010 from which training data were available. However, for prediction of woody vegetation change using extrapolation within epochs from where no training data were available, the classification accuracies were significantly reduced. This was mainly because of variations in rainfall, and associated vegetation greening and senescence, between the years with and without training data. The normalised time-series of NDVI and FPC mean and standard deviation values combined with a spectral index did not yield accuracies as high as the CART and Random Forest classifiers, but proved to be more robust, as this approach did not rely on training data and took advantage of time-series information. The approach, using visual identification of presumptive clearing for training, yielded the lowest land clearing classification accuracies. The methods developed in this research project provide new knowledge and techniques significantly contributing to applied remote sensing and environmental monitoring, i.e. assessment of the relative capacity and accuracy of commonly available image processing algorithms for mapping woody vegetation changes from a globally accessible, free online database of Landsat image data. It also provides more detailed information, suited to Australian conditions, on woody vegetation loss than other existing approaches relying on publically available image and computing facilities. This research is a critical building block for any further work in this area." @default.
- W644077498 created "2016-06-24" @default.
- W644077498 creator A5004573971 @default.
- W644077498 creator A5048014874 @default.
- W644077498 creator A5067181859 @default.
- W644077498 creator A5089152837 @default.
- W644077498 date "2014-01-01" @default.
- W644077498 modified "2023-09-22" @default.
- W644077498 title "Landsat based woody vegetation change detection using the Google Earth Engine" @default.
- W644077498 hasPublicationYear "2014" @default.
- W644077498 type Work @default.
- W644077498 sameAs 644077498 @default.
- W644077498 citedByCount "0" @default.
- W644077498 crossrefType "journal-article" @default.
- W644077498 hasAuthorship W644077498A5004573971 @default.
- W644077498 hasAuthorship W644077498A5048014874 @default.
- W644077498 hasAuthorship W644077498A5067181859 @default.
- W644077498 hasAuthorship W644077498A5089152837 @default.
- W644077498 hasConcept C10138342 @default.
- W644077498 hasConcept C105795698 @default.
- W644077498 hasConcept C134697681 @default.
- W644077498 hasConcept C142724271 @default.
- W644077498 hasConcept C144133560 @default.
- W644077498 hasConcept C18903297 @default.
- W644077498 hasConcept C205649164 @default.
- W644077498 hasConcept C22679943 @default.
- W644077498 hasConcept C2776133958 @default.
- W644077498 hasConcept C2780648208 @default.
- W644077498 hasConcept C33923547 @default.
- W644077498 hasConcept C39432304 @default.
- W644077498 hasConcept C41008148 @default.
- W644077498 hasConcept C4792198 @default.
- W644077498 hasConcept C62649853 @default.
- W644077498 hasConcept C71924100 @default.
- W644077498 hasConcept C77088390 @default.
- W644077498 hasConcept C86803240 @default.
- W644077498 hasConcept C97137747 @default.
- W644077498 hasConceptScore W644077498C10138342 @default.
- W644077498 hasConceptScore W644077498C105795698 @default.
- W644077498 hasConceptScore W644077498C134697681 @default.
- W644077498 hasConceptScore W644077498C142724271 @default.
- W644077498 hasConceptScore W644077498C144133560 @default.
- W644077498 hasConceptScore W644077498C18903297 @default.
- W644077498 hasConceptScore W644077498C205649164 @default.
- W644077498 hasConceptScore W644077498C22679943 @default.
- W644077498 hasConceptScore W644077498C2776133958 @default.
- W644077498 hasConceptScore W644077498C2780648208 @default.
- W644077498 hasConceptScore W644077498C33923547 @default.
- W644077498 hasConceptScore W644077498C39432304 @default.
- W644077498 hasConceptScore W644077498C41008148 @default.
- W644077498 hasConceptScore W644077498C4792198 @default.
- W644077498 hasConceptScore W644077498C62649853 @default.
- W644077498 hasConceptScore W644077498C71924100 @default.
- W644077498 hasConceptScore W644077498C77088390 @default.
- W644077498 hasConceptScore W644077498C86803240 @default.
- W644077498 hasConceptScore W644077498C97137747 @default.
- W644077498 hasLocation W6440774981 @default.
- W644077498 hasOpenAccess W644077498 @default.
- W644077498 hasPrimaryLocation W6440774981 @default.
- W644077498 hasRelatedWork W2056252913 @default.
- W644077498 hasRelatedWork W2059582521 @default.
- W644077498 hasRelatedWork W2059663113 @default.
- W644077498 hasRelatedWork W2125410201 @default.
- W644077498 hasRelatedWork W2169929747 @default.
- W644077498 hasRelatedWork W2273708466 @default.
- W644077498 hasRelatedWork W2277907662 @default.
- W644077498 hasRelatedWork W2508503020 @default.
- W644077498 hasRelatedWork W2775084612 @default.
- W644077498 hasRelatedWork W2794040130 @default.
- W644077498 hasRelatedWork W2885686455 @default.
- W644077498 hasRelatedWork W2924239385 @default.
- W644077498 hasRelatedWork W2955331310 @default.
- W644077498 hasRelatedWork W2963268125 @default.
- W644077498 hasRelatedWork W2969141546 @default.
- W644077498 hasRelatedWork W3004843482 @default.
- W644077498 hasRelatedWork W3007124218 @default.
- W644077498 hasRelatedWork W3020007202 @default.
- W644077498 hasRelatedWork W3084093144 @default.
- W644077498 hasRelatedWork W3094080558 @default.
- W644077498 isParatext "false" @default.
- W644077498 isRetracted "false" @default.
- W644077498 magId "644077498" @default.
- W644077498 workType "article" @default.