Matches in SemOpenAlex for { <https://semopenalex.org/work/W64740057> ?p ?o ?g. }
- W64740057 endingPage "61" @default.
- W64740057 startingPage "55" @default.
- W64740057 abstract "R. R. King, A. Boca, W. Hong, X.-Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam Spectrolab, Inc., 12500 Gladstone Ave., Sylmar, CA 91342 USA ABSTRACT: Beginning with maximum theoretical efficiencies from detailed balance calculations, we evaluate the real-world energy loss mechanisms in a variety of high-efficiency multijunction cell architectures such as inverted metamorphic 3- and 4-junction cells, as a step toward closing the gap between theory and experiment. Experimental results are given on band-gap-engineered lattice-matched and metamorphic 3-junction cells, and on 4-junction terrestrial concentrator cells. A new world record 41.6%-efficient solar cell is presented, the highest efficiency yet demonstrated for any type of solar cell. Keywords: III-V Semiconductors, Concentrator Cells, High-Efficiency, Multijunction Solar Cell, Gallium Arsenide Based Cells, Lattice-Mismatched, Metamorphic 1 INTRODUCTION AR Multijunction solar cells for concentrator photovoltaic (CPV) systems can have over 70% theoretical efficiency. The key question for terrestrial electricity generation, however, is how much of this efficiency potential can be realized in practical solar cells and converted to kilowatt-hours at the electric meter? Experimental III-V multijunction solar cells have demonstrated efficiencies over 40% since 2006 [1], and are the highest efficiency PV technology known presently. But various mechanisms analyzed below still result in a chasm between the efficiencies promised from theoretical calculations, and those reached in practice. Beginning with maximum theoretical efficiencies from detailed balance calculations, we evaluate the real-world energy loss mechanisms in a variety of high-efficiency multijunction cell architectures such as inverted metamorphic 3- and 4-junction cells, as a step toward closing the gap between theory and experiment. Experimental results are given on band-gap-engineered lattice-matched and metamorphic 3-junction cells, and on 4-junction terrestrial concentrator cells. A new world record 41.6%-efficient solar cell is presented, the highest efficiency yet demonstrated for any type of solar cell. This experimental Spectrolab concentrator cell, with a III-V lattice-matched 3-junction design and reduced metal coverage fraction, has been independently verified at NREL under standard test conditions (25°C, AM1.5D, ASTM G173-03 spectrum), at 364 suns (36.4 W/cm" @default.
- W64740057 created "2016-06-24" @default.
- W64740057 creator A5004594557 @default.
- W64740057 creator A5007254153 @default.
- W64740057 creator A5007488830 @default.
- W64740057 creator A5046394103 @default.
- W64740057 creator A5049430114 @default.
- W64740057 creator A5050092501 @default.
- W64740057 creator A5050190846 @default.
- W64740057 creator A5051472902 @default.
- W64740057 creator A5055806166 @default.
- W64740057 creator A5062491463 @default.
- W64740057 creator A5090699710 @default.
- W64740057 date "2009-11-18" @default.
- W64740057 modified "2023-09-30" @default.
- W64740057 title "Band-Gap-Engineered Architectures for High-Efficiency Multijunction Concentrator Solar Cells" @default.
- W64740057 cites W1624788813 @default.
- W64740057 cites W1677708366 @default.
- W64740057 cites W1976662790 @default.
- W64740057 cites W1995725222 @default.
- W64740057 cites W2029637177 @default.
- W64740057 cites W2058199769 @default.
- W64740057 doi "https://doi.org/10.4229/24theupvsec2009-1ao.5.2" @default.
- W64740057 hasPublicationYear "2009" @default.
- W64740057 type Work @default.
- W64740057 sameAs 64740057 @default.
- W64740057 citedByCount "54" @default.
- W64740057 countsByYear W647400572012 @default.
- W64740057 countsByYear W647400572013 @default.
- W64740057 countsByYear W647400572014 @default.
- W64740057 countsByYear W647400572015 @default.
- W64740057 countsByYear W647400572016 @default.
- W64740057 countsByYear W647400572017 @default.
- W64740057 countsByYear W647400572018 @default.
- W64740057 countsByYear W647400572019 @default.
- W64740057 countsByYear W647400572020 @default.
- W64740057 countsByYear W647400572021 @default.
- W64740057 crossrefType "proceedings-article" @default.
- W64740057 hasAuthorship W64740057A5004594557 @default.
- W64740057 hasAuthorship W64740057A5007254153 @default.
- W64740057 hasAuthorship W64740057A5007488830 @default.
- W64740057 hasAuthorship W64740057A5046394103 @default.
- W64740057 hasAuthorship W64740057A5049430114 @default.
- W64740057 hasAuthorship W64740057A5050092501 @default.
- W64740057 hasAuthorship W64740057A5050190846 @default.
- W64740057 hasAuthorship W64740057A5051472902 @default.
- W64740057 hasAuthorship W64740057A5055806166 @default.
- W64740057 hasAuthorship W64740057A5062491463 @default.
- W64740057 hasAuthorship W64740057A5090699710 @default.
- W64740057 hasConcept C119599485 @default.
- W64740057 hasConcept C120665830 @default.
- W64740057 hasConcept C121332964 @default.
- W64740057 hasConcept C127413603 @default.
- W64740057 hasConcept C135694725 @default.
- W64740057 hasConcept C15469602 @default.
- W64740057 hasConcept C181966813 @default.
- W64740057 hasConcept C190168584 @default.
- W64740057 hasConcept C192562407 @default.
- W64740057 hasConcept C206991015 @default.
- W64740057 hasConcept C2778282194 @default.
- W64740057 hasConcept C2780824857 @default.
- W64740057 hasConcept C41291067 @default.
- W64740057 hasConcept C49040817 @default.
- W64740057 hasConcept C510052550 @default.
- W64740057 hasConcept C541104983 @default.
- W64740057 hasConcept C61696701 @default.
- W64740057 hasConcept C62520636 @default.
- W64740057 hasConcept C92433991 @default.
- W64740057 hasConceptScore W64740057C119599485 @default.
- W64740057 hasConceptScore W64740057C120665830 @default.
- W64740057 hasConceptScore W64740057C121332964 @default.
- W64740057 hasConceptScore W64740057C127413603 @default.
- W64740057 hasConceptScore W64740057C135694725 @default.
- W64740057 hasConceptScore W64740057C15469602 @default.
- W64740057 hasConceptScore W64740057C181966813 @default.
- W64740057 hasConceptScore W64740057C190168584 @default.
- W64740057 hasConceptScore W64740057C192562407 @default.
- W64740057 hasConceptScore W64740057C206991015 @default.
- W64740057 hasConceptScore W64740057C2778282194 @default.
- W64740057 hasConceptScore W64740057C2780824857 @default.
- W64740057 hasConceptScore W64740057C41291067 @default.
- W64740057 hasConceptScore W64740057C49040817 @default.
- W64740057 hasConceptScore W64740057C510052550 @default.
- W64740057 hasConceptScore W64740057C541104983 @default.
- W64740057 hasConceptScore W64740057C61696701 @default.
- W64740057 hasConceptScore W64740057C62520636 @default.
- W64740057 hasConceptScore W64740057C92433991 @default.
- W64740057 hasLocation W647400571 @default.
- W64740057 hasOpenAccess W64740057 @default.
- W64740057 hasPrimaryLocation W647400571 @default.
- W64740057 hasRelatedWork W1965409312 @default.
- W64740057 hasRelatedWork W1966368446 @default.
- W64740057 hasRelatedWork W1978314898 @default.
- W64740057 hasRelatedWork W1982936235 @default.
- W64740057 hasRelatedWork W1989576928 @default.
- W64740057 hasRelatedWork W1995725222 @default.
- W64740057 hasRelatedWork W1997103269 @default.
- W64740057 hasRelatedWork W2004340262 @default.