Matches in SemOpenAlex for { <https://semopenalex.org/work/W647599674> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W647599674 abstract "The Bayesian approach to cluster analysis is presented. We assume that all data stem from a finite mixture model, where each component corresponds to one cluster and is given by a multivariate normal distribution with unknown mean and variance. The method produces posterior distributions of all cluster parameters and proportions as well as associated cluster probabilities for all objects. We extend this method in several directions to some common but non-standard situations. The first extension covers the case with a few deviant observations not belonging to one of the normal clusters. An extra component/cluster is created for them, which has a larger variance or a different distribution, e.g. is uniform over the whole range. The second extension is clustering of longitudinal data. All units are clustered at all time points separately and the movements between time points are modeled by Markov transition matrices. This means that the clustering at one time point will be affected by what happens at the neighbouring time points. The third extension handles datasets with missing data, e.g. item non-response. We impute the missing values iteratively in an extra step of the Gibbs sampler estimation algorithm. The Bayesian inference of mixture models has many advantages over the classical approach. However, it is not without computational difficulties. A software package, written in Matlab for Bayesian inference of mixture models is introduced. The programs of the package handle the basic cases of clustering data that are assumed to arise from mixture models of multivariate normal distributions, as well as the non-standard situations." @default.
- W647599674 created "2016-06-24" @default.
- W647599674 creator A5044651526 @default.
- W647599674 date "2008-01-01" @default.
- W647599674 modified "2023-09-27" @default.
- W647599674 title "Bayesian Inference for a Mixture Moddel using the Gibbs Sampler" @default.
- W647599674 hasPublicationYear "2008" @default.
- W647599674 type Work @default.
- W647599674 sameAs 647599674 @default.
- W647599674 citedByCount "0" @default.
- W647599674 crossrefType "journal-article" @default.
- W647599674 hasAuthorship W647599674A5044651526 @default.
- W647599674 hasConcept C105795698 @default.
- W647599674 hasConcept C107673813 @default.
- W647599674 hasConcept C11413529 @default.
- W647599674 hasConcept C124101348 @default.
- W647599674 hasConcept C134261354 @default.
- W647599674 hasConcept C153180895 @default.
- W647599674 hasConcept C154945302 @default.
- W647599674 hasConcept C158424031 @default.
- W647599674 hasConcept C160234255 @default.
- W647599674 hasConcept C2776214188 @default.
- W647599674 hasConcept C33923547 @default.
- W647599674 hasConcept C41008148 @default.
- W647599674 hasConcept C57830394 @default.
- W647599674 hasConcept C61224824 @default.
- W647599674 hasConcept C73555534 @default.
- W647599674 hasConcept C9357733 @default.
- W647599674 hasConceptScore W647599674C105795698 @default.
- W647599674 hasConceptScore W647599674C107673813 @default.
- W647599674 hasConceptScore W647599674C11413529 @default.
- W647599674 hasConceptScore W647599674C124101348 @default.
- W647599674 hasConceptScore W647599674C134261354 @default.
- W647599674 hasConceptScore W647599674C153180895 @default.
- W647599674 hasConceptScore W647599674C154945302 @default.
- W647599674 hasConceptScore W647599674C158424031 @default.
- W647599674 hasConceptScore W647599674C160234255 @default.
- W647599674 hasConceptScore W647599674C2776214188 @default.
- W647599674 hasConceptScore W647599674C33923547 @default.
- W647599674 hasConceptScore W647599674C41008148 @default.
- W647599674 hasConceptScore W647599674C57830394 @default.
- W647599674 hasConceptScore W647599674C61224824 @default.
- W647599674 hasConceptScore W647599674C73555534 @default.
- W647599674 hasConceptScore W647599674C9357733 @default.
- W647599674 hasLocation W6475996741 @default.
- W647599674 hasOpenAccess W647599674 @default.
- W647599674 hasPrimaryLocation W6475996741 @default.
- W647599674 hasRelatedWork W1005504670 @default.
- W647599674 hasRelatedWork W128332548 @default.
- W647599674 hasRelatedWork W147799312 @default.
- W647599674 hasRelatedWork W1594453127 @default.
- W647599674 hasRelatedWork W1660492679 @default.
- W647599674 hasRelatedWork W1973248905 @default.
- W647599674 hasRelatedWork W1982935263 @default.
- W647599674 hasRelatedWork W2003872007 @default.
- W647599674 hasRelatedWork W2015253562 @default.
- W647599674 hasRelatedWork W2028794909 @default.
- W647599674 hasRelatedWork W2055309705 @default.
- W647599674 hasRelatedWork W2063033621 @default.
- W647599674 hasRelatedWork W2069120451 @default.
- W647599674 hasRelatedWork W2136746162 @default.
- W647599674 hasRelatedWork W2186753164 @default.
- W647599674 hasRelatedWork W2543222 @default.
- W647599674 hasRelatedWork W2604320991 @default.
- W647599674 hasRelatedWork W3092116024 @default.
- W647599674 hasRelatedWork W3197672431 @default.
- W647599674 hasRelatedWork W2495412139 @default.
- W647599674 isParatext "false" @default.
- W647599674 isRetracted "false" @default.
- W647599674 magId "647599674" @default.
- W647599674 workType "article" @default.