Matches in SemOpenAlex for { <https://semopenalex.org/work/W65199992> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W65199992 abstract "Natural fluctuations in the state of the environment can long conceal or distort important trends in the human impact on our ecosystems. Accordingly, there is increasing interest in statistical normalisation techniques that can clarify the anthropogenic effects by removing meteorologically driven fluctuations and other natural variation in time series of environmental quality data. This thesis shows that semi- and nonparametric regression methods can provide effective tools for applying such normalisation to collected data. In particular, it is demonstrated how monotonic regression can be utilised in this context. A new numerical algorithm for this type of regression can accommodate two or more discrete or continuous explanatory variables, which enables simultaneous estimation of a monotonic temporal trend and correction for one or more covariates that have a monotonic relationship with the response variable under consideration. To illustrate the method, a case study of mercury levels in fish is presented, using body length and weight as covariates. Semiparametric regression techniques enable trend analyses in which a nonparametric representation of temporal trends is combined with parametrically modelled corrections for covariates. Here, it is described how such models can be employed to extract trends from data collected over several seasons, and this procedure is exemplified by discussing how temporal trends in the load of nutrients carried by the Elbe River can be detected while adjusting for water discharge and other factors. In addition, it is shown how semiparametric models can be used for joint normalisation of several time series of data." @default.
- W65199992 created "2016-06-24" @default.
- W65199992 creator A5008907863 @default.
- W65199992 creator A5019742094 @default.
- W65199992 date "2005-01-01" @default.
- W65199992 modified "2023-09-27" @default.
- W65199992 title "Trend analysis of mercury in fish using nonparametric regression" @default.
- W65199992 cites W1554944419 @default.
- W65199992 cites W1567227628 @default.
- W65199992 cites W1860263281 @default.
- W65199992 cites W1972553884 @default.
- W65199992 cites W1974568568 @default.
- W65199992 cites W1990589351 @default.
- W65199992 cites W1998798305 @default.
- W65199992 cites W2013200711 @default.
- W65199992 cites W2026066148 @default.
- W65199992 cites W2049047959 @default.
- W65199992 cites W2052600478 @default.
- W65199992 cites W2054085588 @default.
- W65199992 cites W2078180078 @default.
- W65199992 cites W231753844 @default.
- W65199992 cites W2797583072 @default.
- W65199992 cites W3014310718 @default.
- W65199992 cites W562107606 @default.
- W65199992 cites W97172343 @default.
- W65199992 hasPublicationYear "2005" @default.
- W65199992 type Work @default.
- W65199992 sameAs 65199992 @default.
- W65199992 citedByCount "0" @default.
- W65199992 crossrefType "journal-article" @default.
- W65199992 hasAuthorship W65199992A5008907863 @default.
- W65199992 hasAuthorship W65199992A5019742094 @default.
- W65199992 hasConcept C102366305 @default.
- W65199992 hasConcept C105795698 @default.
- W65199992 hasConcept C119043178 @default.
- W65199992 hasConcept C149782125 @default.
- W65199992 hasConcept C151406439 @default.
- W65199992 hasConcept C152877465 @default.
- W65199992 hasConcept C166957645 @default.
- W65199992 hasConcept C19539793 @default.
- W65199992 hasConcept C205649164 @default.
- W65199992 hasConcept C2779343474 @default.
- W65199992 hasConcept C33923547 @default.
- W65199992 hasConcept C41008148 @default.
- W65199992 hasConcept C48921125 @default.
- W65199992 hasConcept C74127309 @default.
- W65199992 hasConcept C83546350 @default.
- W65199992 hasConceptScore W65199992C102366305 @default.
- W65199992 hasConceptScore W65199992C105795698 @default.
- W65199992 hasConceptScore W65199992C119043178 @default.
- W65199992 hasConceptScore W65199992C149782125 @default.
- W65199992 hasConceptScore W65199992C151406439 @default.
- W65199992 hasConceptScore W65199992C152877465 @default.
- W65199992 hasConceptScore W65199992C166957645 @default.
- W65199992 hasConceptScore W65199992C19539793 @default.
- W65199992 hasConceptScore W65199992C205649164 @default.
- W65199992 hasConceptScore W65199992C2779343474 @default.
- W65199992 hasConceptScore W65199992C33923547 @default.
- W65199992 hasConceptScore W65199992C41008148 @default.
- W65199992 hasConceptScore W65199992C48921125 @default.
- W65199992 hasConceptScore W65199992C74127309 @default.
- W65199992 hasConceptScore W65199992C83546350 @default.
- W65199992 hasIssue "7" @default.
- W65199992 hasLocation W651999921 @default.
- W65199992 hasOpenAccess W65199992 @default.
- W65199992 hasPrimaryLocation W651999921 @default.
- W65199992 hasRelatedWork W1256480559 @default.
- W65199992 hasRelatedWork W1711063199 @default.
- W65199992 hasRelatedWork W1860263281 @default.
- W65199992 hasRelatedWork W1978081435 @default.
- W65199992 hasRelatedWork W1981536645 @default.
- W65199992 hasRelatedWork W1982534941 @default.
- W65199992 hasRelatedWork W1983793523 @default.
- W65199992 hasRelatedWork W2044458199 @default.
- W65199992 hasRelatedWork W2070824420 @default.
- W65199992 hasRelatedWork W2124706871 @default.
- W65199992 hasRelatedWork W2266745620 @default.
- W65199992 hasRelatedWork W2280185517 @default.
- W65199992 hasRelatedWork W2539097377 @default.
- W65199992 hasRelatedWork W2563234362 @default.
- W65199992 hasRelatedWork W2885580414 @default.
- W65199992 hasRelatedWork W2888239558 @default.
- W65199992 hasRelatedWork W2906113570 @default.
- W65199992 hasRelatedWork W2912084867 @default.
- W65199992 hasRelatedWork W2967752077 @default.
- W65199992 hasRelatedWork W1986054014 @default.
- W65199992 isParatext "false" @default.
- W65199992 isRetracted "false" @default.
- W65199992 magId "65199992" @default.
- W65199992 workType "article" @default.