Matches in SemOpenAlex for { <https://semopenalex.org/work/W652484830> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W652484830 abstract "Over the last decades, Bayesian Networks (BNs) have become an increasingly popular technique to model data under presence of uncertainty. BNs are probabilistic models that represent relationships between variables by means of a node structure and a set of parameters. Learning efficiently the structure that models a particular dataset is a NP-hard task that requires substantial computational efforts to be successful. Although there exist many families of techniques for this purpose, this thesis focuses on the study and improvement of search and score methods such as Evolutionary Algorithms (EAs). In the domain of BN structure learning, previous work has investigated the use of permutations to represent variable orderings within EAs. In this thesis, the characteristic properties of permutation representations are analysed and used in order to enhance BN structure learning. The thesis assesses well-established algorithms to provide a detailed analysis of the difficulty of learning BN structures using permutation representations. Using selected benchmarks, rugged and plateaued fitness landscapes are identified that result in a loss of population diversity throughout the search. The thesis proposes two approaches to handle the loss of diversity. First, the benefits of introducing the Island Model (IM) paradigm are studied, showing that diversity loss can be significantly reduced. Second, a novel agent-based metaheuristic is presented in which evolution is based on the use of several mutation operators and the definition of a distance metric in permutation spaces. The latter approach shows that diversity can be maintained throughout the search while exploring efficiently the solution space. In addition, the use of IM is investigated in the context of distributed data, a common property of real-world problems. Experiments prove that privacy can be preserved while learning BNs of high quality. Finally, using UK-wide data related to prostate cancer patients, the thesis assesses the general suitability of BNs alongside the proposed learning approaches for medical data modeling. Following comparisons with tools currently used in clinical settings and with alternative classifiers, it is shown that BNs can improve the predictive power of prostate cancer staging tools, a major concern in the field of urology." @default.
- W652484830 created "2016-06-24" @default.
- W652484830 creator A5024679525 @default.
- W652484830 date "2013-05-31" @default.
- W652484830 modified "2023-09-27" @default.
- W652484830 title "Bayesian network structure learning using characteristic properties of permutation representations with applications to prostate cancer treatment." @default.
- W652484830 hasPublicationYear "2013" @default.
- W652484830 type Work @default.
- W652484830 sameAs 652484830 @default.
- W652484830 citedByCount "0" @default.
- W652484830 crossrefType "dissertation" @default.
- W652484830 hasAuthorship W652484830A5024679525 @default.
- W652484830 hasConcept C119857082 @default.
- W652484830 hasConcept C121332964 @default.
- W652484830 hasConcept C127413603 @default.
- W652484830 hasConcept C144024400 @default.
- W652484830 hasConcept C149923435 @default.
- W652484830 hasConcept C154945302 @default.
- W652484830 hasConcept C176217482 @default.
- W652484830 hasConcept C177264268 @default.
- W652484830 hasConcept C199360897 @default.
- W652484830 hasConcept C21308566 @default.
- W652484830 hasConcept C21547014 @default.
- W652484830 hasConcept C24890656 @default.
- W652484830 hasConcept C2908647359 @default.
- W652484830 hasConcept C33724603 @default.
- W652484830 hasConcept C41008148 @default.
- W652484830 hasConcept C62611344 @default.
- W652484830 hasConcept C66938386 @default.
- W652484830 hasConcept C80444323 @default.
- W652484830 hasConceptScore W652484830C119857082 @default.
- W652484830 hasConceptScore W652484830C121332964 @default.
- W652484830 hasConceptScore W652484830C127413603 @default.
- W652484830 hasConceptScore W652484830C144024400 @default.
- W652484830 hasConceptScore W652484830C149923435 @default.
- W652484830 hasConceptScore W652484830C154945302 @default.
- W652484830 hasConceptScore W652484830C176217482 @default.
- W652484830 hasConceptScore W652484830C177264268 @default.
- W652484830 hasConceptScore W652484830C199360897 @default.
- W652484830 hasConceptScore W652484830C21308566 @default.
- W652484830 hasConceptScore W652484830C21547014 @default.
- W652484830 hasConceptScore W652484830C24890656 @default.
- W652484830 hasConceptScore W652484830C2908647359 @default.
- W652484830 hasConceptScore W652484830C33724603 @default.
- W652484830 hasConceptScore W652484830C41008148 @default.
- W652484830 hasConceptScore W652484830C62611344 @default.
- W652484830 hasConceptScore W652484830C66938386 @default.
- W652484830 hasConceptScore W652484830C80444323 @default.
- W652484830 hasLocation W6524848301 @default.
- W652484830 hasOpenAccess W652484830 @default.
- W652484830 hasPrimaryLocation W6524848301 @default.
- W652484830 hasRelatedWork W148413233 @default.
- W652484830 hasRelatedWork W1994848721 @default.
- W652484830 hasRelatedWork W2029296921 @default.
- W652484830 hasRelatedWork W2156252538 @default.
- W652484830 hasRelatedWork W2503787270 @default.
- W652484830 hasRelatedWork W2507203001 @default.
- W652484830 hasRelatedWork W2565923887 @default.
- W652484830 hasRelatedWork W2570816834 @default.
- W652484830 hasRelatedWork W2611202981 @default.
- W652484830 hasRelatedWork W2735320052 @default.
- W652484830 hasRelatedWork W2886500912 @default.
- W652484830 hasRelatedWork W2898798880 @default.
- W652484830 hasRelatedWork W2921518676 @default.
- W652484830 hasRelatedWork W2950750989 @default.
- W652484830 hasRelatedWork W2951304174 @default.
- W652484830 hasRelatedWork W2971903464 @default.
- W652484830 hasRelatedWork W3116194015 @default.
- W652484830 hasRelatedWork W3144824798 @default.
- W652484830 hasRelatedWork W3148843470 @default.
- W652484830 hasRelatedWork W604586230 @default.
- W652484830 isParatext "false" @default.
- W652484830 isRetracted "false" @default.
- W652484830 magId "652484830" @default.
- W652484830 workType "dissertation" @default.