Matches in SemOpenAlex for { <https://semopenalex.org/work/W65376805> ?p ?o ?g. }
- W65376805 abstract "We study the properties of regular structures of lines, such as equiangular sets of lines and mutually unbiased bases (MUBs) in a general setting that includes real, complex and quaternionic spaces. We formulate a common generalization of several results in real and complex spaces that also hold in the quaternionic space. A set of lines is called equiangular if the angle between each pair is the same. A set of MUBs is a collection of orthonormal bases such that the angle between vectors from different bases is constant. Regular structures of lines have been studied in several fields such as digital communication, quantum computing, discrete mathematics and analysis. Our new concept of a multipartite equiangular set of lines is a common generalization of equiangular lines and MUBs. We prove a bound on the size of such set of lines, which generalizes the well-known absolute upper bounds. The existence of d + 1 MUBs in Cd is only known for prime power dimensions. We study sets of d + 1 MUBs that are the union of a standard basis and an orbit of the Weyl-Heisenberg group. As an example, we construct such MUBs in prime power dimensions. We also show connections between spherical 2-designs and other structures of lines. Fiducial vectors have been widely used to construct large sets of equiangular lines. A complex vector is fiducial if its orbit under a Weyl-Heisenberg group is an equiangular set of d2 lines. We give a new characterization of fiducial vectors, one that simplifies and significantly reduces the number of equations that must be solved to find a fiducial vector. We consider some possible classes of fiducial vectors and prove several nonexistence results. For example, using our new characterization we prove that the construction of fiducial vectors in small prime dimensions by Appleby (2005) essentially does not generalize. Finally, we give some methods for constructing equiangular sets of lines in complex and quaternionic spaces. We also find numerical fiducial vectors with high precision in Cd , d ≤ 21." @default.
- W65376805 created "2016-06-24" @default.
- W65376805 creator A5081560748 @default.
- W65376805 date "2008-01-01" @default.
- W65376805 modified "2023-09-27" @default.
- W65376805 title "Regular structures of lines in complex spaces" @default.
- W65376805 cites W1483489440 @default.
- W65376805 cites W1509167021 @default.
- W65376805 cites W1512840059 @default.
- W65376805 cites W1528740882 @default.
- W65376805 cites W1539726851 @default.
- W65376805 cites W1542496577 @default.
- W65376805 cites W1543806621 @default.
- W65376805 cites W1553440965 @default.
- W65376805 cites W1556265897 @default.
- W65376805 cites W1568296425 @default.
- W65376805 cites W1599335667 @default.
- W65376805 cites W1608469714 @default.
- W65376805 cites W1624182979 @default.
- W65376805 cites W1631356911 @default.
- W65376805 cites W1639957736 @default.
- W65376805 cites W1656253992 @default.
- W65376805 cites W173145114 @default.
- W65376805 cites W178039687 @default.
- W65376805 cites W1886182640 @default.
- W65376805 cites W1969891477 @default.
- W65376805 cites W1977809994 @default.
- W65376805 cites W1979500630 @default.
- W65376805 cites W1979972099 @default.
- W65376805 cites W1983735761 @default.
- W65376805 cites W1988646993 @default.
- W65376805 cites W1989397443 @default.
- W65376805 cites W1996415070 @default.
- W65376805 cites W2003583756 @default.
- W65376805 cites W2009497707 @default.
- W65376805 cites W2015049075 @default.
- W65376805 cites W2030369304 @default.
- W65376805 cites W2033437505 @default.
- W65376805 cites W2033772417 @default.
- W65376805 cites W2035469609 @default.
- W65376805 cites W2037387604 @default.
- W65376805 cites W2037406168 @default.
- W65376805 cites W2046938896 @default.
- W65376805 cites W2047595535 @default.
- W65376805 cites W2049467095 @default.
- W65376805 cites W2050482406 @default.
- W65376805 cites W2050507755 @default.
- W65376805 cites W2051772613 @default.
- W65376805 cites W2054884346 @default.
- W65376805 cites W2086869478 @default.
- W65376805 cites W2094235750 @default.
- W65376805 cites W2094366212 @default.
- W65376805 cites W2099101264 @default.
- W65376805 cites W2100395640 @default.
- W65376805 cites W2104795888 @default.
- W65376805 cites W2121743251 @default.
- W65376805 cites W2131730048 @default.
- W65376805 cites W2133866430 @default.
- W65376805 cites W2152345982 @default.
- W65376805 cites W2182304189 @default.
- W65376805 cites W2317628658 @default.
- W65376805 cites W2335187233 @default.
- W65376805 cites W2478188808 @default.
- W65376805 cites W2584020404 @default.
- W65376805 cites W2920061280 @default.
- W65376805 cites W2950091396 @default.
- W65376805 cites W2952181186 @default.
- W65376805 cites W2953637949 @default.
- W65376805 cites W2954945477 @default.
- W65376805 cites W2969357538 @default.
- W65376805 cites W3043060850 @default.
- W65376805 cites W3103274847 @default.
- W65376805 cites W585473508 @default.
- W65376805 cites W96453002 @default.
- W65376805 cites W2087377426 @default.
- W65376805 cites W2183758324 @default.
- W65376805 cites W3200817088 @default.
- W65376805 hasPublicationYear "2008" @default.
- W65376805 type Work @default.
- W65376805 sameAs 65376805 @default.
- W65376805 citedByCount "8" @default.
- W65376805 countsByYear W653768052015 @default.
- W65376805 countsByYear W653768052016 @default.
- W65376805 countsByYear W653768052017 @default.
- W65376805 countsByYear W653768052020 @default.
- W65376805 crossrefType "dissertation" @default.
- W65376805 hasAuthorship W65376805A5081560748 @default.
- W65376805 hasConcept C114614502 @default.
- W65376805 hasConcept C118615104 @default.
- W65376805 hasConcept C127413603 @default.
- W65376805 hasConcept C13336665 @default.
- W65376805 hasConcept C146978453 @default.
- W65376805 hasConcept C158587675 @default.
- W65376805 hasConcept C174072685 @default.
- W65376805 hasConcept C184992742 @default.
- W65376805 hasConcept C196644772 @default.
- W65376805 hasConcept C202444582 @default.
- W65376805 hasConcept C2524010 @default.
- W65376805 hasConcept C2834757 @default.
- W65376805 hasConcept C33923547 @default.