Matches in SemOpenAlex for { <https://semopenalex.org/work/W65642992> ?p ?o ?g. }
- W65642992 abstract "We derive a central limit theorem for the maximum of a sum of high dimensional random vectors. More precisely, we establish conditions under which the distribution of the maximum is approximated by the maximum of a sum of the Gaussian random vectors with the same covariance matrices as the original vectors. The key innovation of our result is that it applies even if the dimension of random vectors (p) is much larger than the sample size (n). In fact, the growth of p could be exponential in some fractional power of n. We also show that the distribution of the maximum of a sum of the Gaussian random vectors with unknown covariance matrices can be estimated by the distribution of the maximum of the (conditional) Gaussian process obtained by multiplying the original vectors with i.i.d. Gaussian multipliers. We call this procedure the “multiplier bootstrap”. Here too, the growth of p could be exponential in some fractional power of n. We prove that our distributional approximations, either Gaussian or conditional Gaussian, yield a high-quality approximation for the distribution of the original maximum, often with at most a polynomial approximation error. These results are of interest in numerous econometric and statistical applications. In particular, we demonstrate how our central limit theorem and the multiplier bootstrap can be used for high dimensional estimation, multiple hypothesis testing, and adaptive specification testing. All of our results contain non-asymptotic bounds on approximation errors." @default.
- W65642992 created "2016-06-24" @default.
- W65642992 creator A5068383641 @default.
- W65642992 creator A5079316970 @default.
- W65642992 creator A5091025078 @default.
- W65642992 date "2012-12-18" @default.
- W65642992 modified "2023-09-25" @default.
- W65642992 title "Central limit theorems and multiplier bootstrap when <i>p</i> is much larger than <i>n</i>" @default.
- W65642992 cites W131372963 @default.
- W65642992 cites W132471885 @default.
- W65642992 cites W1507545330 @default.
- W65642992 cites W1509689762 @default.
- W65642992 cites W1521230616 @default.
- W65642992 cites W1545211435 @default.
- W65642992 cites W1656622334 @default.
- W65642992 cites W183224012 @default.
- W65642992 cites W1894828066 @default.
- W65642992 cites W1965557403 @default.
- W65642992 cites W1973627955 @default.
- W65642992 cites W1985905466 @default.
- W65642992 cites W1993474005 @default.
- W65642992 cites W1995774079 @default.
- W65642992 cites W2004216344 @default.
- W65642992 cites W2005838333 @default.
- W65642992 cites W2007597463 @default.
- W65642992 cites W2008173531 @default.
- W65642992 cites W2013981562 @default.
- W65642992 cites W2014989245 @default.
- W65642992 cites W2026653661 @default.
- W65642992 cites W2049552229 @default.
- W65642992 cites W2054640142 @default.
- W65642992 cites W2066393385 @default.
- W65642992 cites W2069754508 @default.
- W65642992 cites W2070855072 @default.
- W65642992 cites W2093272448 @default.
- W65642992 cites W2100691045 @default.
- W65642992 cites W2116581043 @default.
- W65642992 cites W2143410554 @default.
- W65642992 cites W2144461674 @default.
- W65642992 cites W2148069397 @default.
- W65642992 cites W2150509027 @default.
- W65642992 cites W2169419483 @default.
- W65642992 cites W2295765951 @default.
- W65642992 cites W2917480902 @default.
- W65642992 cites W3016197797 @default.
- W65642992 cites W3100883892 @default.
- W65642992 cites W3103221895 @default.
- W65642992 cites W3105340263 @default.
- W65642992 cites W3121832289 @default.
- W65642992 cites W3122349611 @default.
- W65642992 cites W3124838210 @default.
- W65642992 cites W340056678 @default.
- W65642992 cites W364436601 @default.
- W65642992 doi "https://doi.org/10.1920/wp.cem.2012.4512" @default.
- W65642992 hasPublicationYear "2012" @default.
- W65642992 type Work @default.
- W65642992 sameAs 65642992 @default.
- W65642992 citedByCount "3" @default.
- W65642992 countsByYear W656429922013 @default.
- W65642992 countsByYear W656429922014 @default.
- W65642992 countsByYear W656429922019 @default.
- W65642992 crossrefType "report" @default.
- W65642992 hasAuthorship W65642992A5068383641 @default.
- W65642992 hasAuthorship W65642992A5079316970 @default.
- W65642992 hasAuthorship W65642992A5091025078 @default.
- W65642992 hasBestOaLocation W656429922 @default.
- W65642992 hasConcept C105795698 @default.
- W65642992 hasConcept C114614502 @default.
- W65642992 hasConcept C124584101 @default.
- W65642992 hasConcept C134306372 @default.
- W65642992 hasConcept C151201525 @default.
- W65642992 hasConcept C162324750 @default.
- W65642992 hasConcept C165556158 @default.
- W65642992 hasConcept C166785042 @default.
- W65642992 hasConcept C33923547 @default.
- W65642992 hasConceptScore W65642992C105795698 @default.
- W65642992 hasConceptScore W65642992C114614502 @default.
- W65642992 hasConceptScore W65642992C124584101 @default.
- W65642992 hasConceptScore W65642992C134306372 @default.
- W65642992 hasConceptScore W65642992C151201525 @default.
- W65642992 hasConceptScore W65642992C162324750 @default.
- W65642992 hasConceptScore W65642992C165556158 @default.
- W65642992 hasConceptScore W65642992C166785042 @default.
- W65642992 hasConceptScore W65642992C33923547 @default.
- W65642992 hasLocation W656429921 @default.
- W65642992 hasLocation W656429922 @default.
- W65642992 hasOpenAccess W65642992 @default.
- W65642992 hasPrimaryLocation W656429921 @default.
- W65642992 hasRelatedWork W1971702062 @default.
- W65642992 hasRelatedWork W1978042415 @default.
- W65642992 hasRelatedWork W2010663882 @default.
- W65642992 hasRelatedWork W2021796436 @default.
- W65642992 hasRelatedWork W2027026480 @default.
- W65642992 hasRelatedWork W2041339663 @default.
- W65642992 hasRelatedWork W2125449990 @default.
- W65642992 hasRelatedWork W2769873724 @default.
- W65642992 hasRelatedWork W3086542228 @default.
- W65642992 hasRelatedWork W3122888083 @default.
- W65642992 isParatext "false" @default.
- W65642992 isRetracted "false" @default.