Matches in SemOpenAlex for { <https://semopenalex.org/work/W657197872> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W657197872 abstract "The present study examined design issues of microchannel evaporators associated with the flow maldistribution caused due to header pressure gradient. The effects of mass flow maldistribution on microchannel heat exchanger were quantified by using a single port simulation model. Longitudinal headers as currently used with microchannel condensers may not be suitable for the applications with microchannel evaporators. Mass flow maldistribution was investigated by using well-known pressure drop and heat transfer correlations for two-phase flow, selected after comparing with the results obtained by using different correlations. It was found that mass flow maldistribution cannot be controlled by changing either port/header diameter or the refrigerant state at the inlet to the port, but only by minimizing pressure gradients along header. At the same time the need to avoid phase separation in the header places a lower bound on mass flux. The dependence of heat exchanger capacity on the diameter and the length of the longitudinal and radial headers and was investigated in detail. Results demonstrated that the requirement for inertially dominated flow in the inlet header severely limits the set of feasible evaporator geometries. Accordingly, alternative concepts for header design were suggested. Introduction Compact cross-flow heat exchangers with flat multi-port microchannel tubes and folded louvered fins have almost completely replaced conventional round tube flat fin condensers in automotive air-conditioning applications. Nearly all have two vertical headers partitioned to accommodate 3-5 passes consisting of multiple parallel tubes. Since void fractions exceed 90% in most of the headers, achieving near-uniform vapor distribution among hundreds of parallel refrigerant parts has not presented serious problems for condensers. However in evaporators the challenge is to distribute the liquid evenly among the microchannel ports. Because of the high liquid/vapor density ratio of fluorocarbon refrigerants, void fractions are generally ~ 90% at the evaporator inlet and exceed 90% at intermediate headers in higher-quality regimes. Experimental data on microchannel evaporators are limited. Stott and Bullard [1] conducted experiments with microchannel evaporator (with port diameters ~ 0.7 mm), fed at four locations along the horizontal inlet header. They quantified maldistribution by measuring superheat on individual microchannel tubes, observing that some had nearly zero approach temperature differences while other exits were saturated, despite the TXV holding the aggregate suction superheat at 5°C. The tubes showing highest exit superheat were the ones that received most of vapor at their inlets. The experiments repeated for different refrigerant flow rates showed the same trend. In all the experiments, inlet header mass flux was less than 20% of the needed to maintain inertially-dominated fullydeveloped flow. Little is known about the flow regimes in developing two-phase flow, but it seems likely that the refrigerant would be highly susceptible to stratification at mass velocities significantly less than the 265 kg/m-s required for annular flow at these conditions [2]. Cho et al. [3] investigated flow maldistribution and phase separation in a microchannel evaporator with 15 tubes and aluminum header pipe with outer diameter of 22 mm at the mass flux of 60 kg/m-s. Mass flow rates were determined in each microchannel tube, along with the ratio of the quality in each microchannel tube to inlet quality" @default.
- W657197872 created "2016-06-24" @default.
- W657197872 creator A5018357119 @default.
- W657197872 creator A5034589360 @default.
- W657197872 creator A5067487727 @default.
- W657197872 date "2002-06-01" @default.
- W657197872 modified "2023-09-27" @default.
- W657197872 title "Refrigerant-Side Tradeoffs in Microchannel Evaporators" @default.
- W657197872 cites W105110130 @default.
- W657197872 cites W1214580979 @default.
- W657197872 cites W1524477586 @default.
- W657197872 cites W1969830913 @default.
- W657197872 cites W2059484951 @default.
- W657197872 cites W2061255566 @default.
- W657197872 cites W2115101356 @default.
- W657197872 cites W2256105018 @default.
- W657197872 cites W2283902892 @default.
- W657197872 cites W2498072337 @default.
- W657197872 cites W2588172669 @default.
- W657197872 hasPublicationYear "2002" @default.
- W657197872 type Work @default.
- W657197872 sameAs 657197872 @default.
- W657197872 citedByCount "0" @default.
- W657197872 crossrefType "journal-article" @default.
- W657197872 hasAuthorship W657197872A5018357119 @default.
- W657197872 hasAuthorship W657197872A5034589360 @default.
- W657197872 hasAuthorship W657197872A5067487727 @default.
- W657197872 hasConcept C107706546 @default.
- W657197872 hasConcept C114088122 @default.
- W657197872 hasConcept C118227150 @default.
- W657197872 hasConcept C121332964 @default.
- W657197872 hasConcept C127413603 @default.
- W657197872 hasConcept C144308804 @default.
- W657197872 hasConcept C192562407 @default.
- W657197872 hasConcept C199499590 @default.
- W657197872 hasConcept C31258907 @default.
- W657197872 hasConcept C32375409 @default.
- W657197872 hasConcept C38349280 @default.
- W657197872 hasConcept C41008148 @default.
- W657197872 hasConcept C48105269 @default.
- W657197872 hasConcept C57879066 @default.
- W657197872 hasConcept C63662833 @default.
- W657197872 hasConcept C78519656 @default.
- W657197872 hasConcept C91311341 @default.
- W657197872 hasConcept C91738503 @default.
- W657197872 hasConceptScore W657197872C107706546 @default.
- W657197872 hasConceptScore W657197872C114088122 @default.
- W657197872 hasConceptScore W657197872C118227150 @default.
- W657197872 hasConceptScore W657197872C121332964 @default.
- W657197872 hasConceptScore W657197872C127413603 @default.
- W657197872 hasConceptScore W657197872C144308804 @default.
- W657197872 hasConceptScore W657197872C192562407 @default.
- W657197872 hasConceptScore W657197872C199499590 @default.
- W657197872 hasConceptScore W657197872C31258907 @default.
- W657197872 hasConceptScore W657197872C32375409 @default.
- W657197872 hasConceptScore W657197872C38349280 @default.
- W657197872 hasConceptScore W657197872C41008148 @default.
- W657197872 hasConceptScore W657197872C48105269 @default.
- W657197872 hasConceptScore W657197872C57879066 @default.
- W657197872 hasConceptScore W657197872C63662833 @default.
- W657197872 hasConceptScore W657197872C78519656 @default.
- W657197872 hasConceptScore W657197872C91311341 @default.
- W657197872 hasConceptScore W657197872C91738503 @default.
- W657197872 hasLocation W6571978721 @default.
- W657197872 hasOpenAccess W657197872 @default.
- W657197872 hasPrimaryLocation W6571978721 @default.
- W657197872 hasRelatedWork W1585517675 @default.
- W657197872 hasRelatedWork W1605351244 @default.
- W657197872 hasRelatedWork W1964118935 @default.
- W657197872 hasRelatedWork W2015585843 @default.
- W657197872 hasRelatedWork W2042598694 @default.
- W657197872 hasRelatedWork W2060581919 @default.
- W657197872 hasRelatedWork W2105691087 @default.
- W657197872 hasRelatedWork W2581029664 @default.
- W657197872 hasRelatedWork W2777081037 @default.
- W657197872 hasRelatedWork W3035966369 @default.
- W657197872 hasRelatedWork W3044480989 @default.
- W657197872 hasRelatedWork W3177423715 @default.
- W657197872 hasRelatedWork W3203986899 @default.
- W657197872 hasRelatedWork W2205043485 @default.
- W657197872 hasRelatedWork W2832001146 @default.
- W657197872 hasRelatedWork W2834747470 @default.
- W657197872 hasRelatedWork W2852623257 @default.
- W657197872 hasRelatedWork W2862106869 @default.
- W657197872 hasRelatedWork W2926316177 @default.
- W657197872 hasRelatedWork W3152319565 @default.
- W657197872 isParatext "false" @default.
- W657197872 isRetracted "false" @default.
- W657197872 magId "657197872" @default.
- W657197872 workType "article" @default.