Matches in SemOpenAlex for { <https://semopenalex.org/work/W66052330> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W66052330 endingPage "316" @default.
- W66052330 startingPage "312" @default.
- W66052330 abstract "We examine generalizations of random variables and martingales. We prove a new convergence theorem for setvalued martingales. We also generalize a well known characterization of set-valued random variables to the fuzzy setting. Keywords— Banach space, fuzzy, martingale, random variable, set-valued. 1 Set-valued random variables and martingales The theory of conditional expectations and martingales has been established for Banach space-valued, Bochnerintegrable functions. Hiai and Umegaki have then generalized random variables, conditional expectations and martingales to the set-valued (multivalued) setting in [1]. We will assume that the reader is familiar with the basic ideas of random variables and provide a brief introduction to the set-valued generalization and also to the related concept of conditional expectations which has played an important role in probability theory, ergodic theory and quantum statistical mechanics. We also contribute to the theory of setvalued martingales and since martingales are important in probability theory, we feel that there are potential applications to be developed from this work. This paper can be divided into two main results. The first result is an original convergence theorem for set-valued martingales. The second result is a generalization of a useful characterization ofmeasurable set-valued random variables by Hiai and Umegaki in the fuzzy setting. The original theorem by Hiai and Umegaki was an essential tool used to obtain many of the subsequent results in [1] and it is clear that we can apply this new generalized theorem in an analagous way in the fuzzy setting. We will be again considering a measure space (Ω,Σ, μ), a separable Banach space (X, ‖·‖)withK a field of scalars (either R or C). We remind the reader that functions f, g from Ω intoX are said to be equal almost everywhere, denoted f = g a.e. (μ) or f(ω) = g(ω) (∀ω ∈ Ω) a.e. (μ) if f(ω) = g(ω) for all ω ∈ Ω except on a set of measure zero. We can omit reference to μ and Ω if there is no confusion. That is f = g a.e. if μ({ω ∈ Ω : f(ω) = g(ω)}) = 0. We will denote by M [Ω, X] and L[Ω, X] the collections of measurable and p-integrable functions f : Ω → X respectively, for 1 ≤ p ≤ ∞. Due to the completeness of X we have several characterizations of this class of functions (see [1] Theorem 1.0). As in [1], K(X) shall denote the collection of nonempty compact subsets of X and Kk(X) the collection of convex sets in K(X). We denote the collection of (weakly) measurable set-valued functions F : Ω → Kk(X) by M[Ω, Kk(X)]. That is F ∈ M[Ω, Kk(X)] if and only if for all O open, O ⊂ X, F(O) ∈ Σ. Let p be chosen such that 1 ≤ p ≤ ∞ then we denote by L[Ω, Kk(X)] = L[Ω,Σ, μ,Kk(X)] the space of all p-integrable functions in M[Ω, Kk(X)], where two functions F1, F2 ∈ L[Ω, Kk(X)] will be considered identical if F1(ω) = F2(ω) a.e. The topology on Kk(X) is induced by the Hausdorff metric defined by dH(A,B) = max { sup a∈A inf b∈B ‖a− b‖, sup b∈B inf a∈A ‖a− b‖ } , (1.1) for A,B ⊆ X. It is well known (Kk(X), dH) is a complete separable metric space. It now follows that in this topology (Fn)n∈N ⊆ M[Ω, Kk(X)] then Fn −→ F as n −→ ∞ if and only if dH(Fn(ω), F (ω)) −→ 0 for all ω ∈ Ω a.e. We can consider (X, ‖·‖) to be a topological space since a norm defines a natural metric on X which induces the metric topology on X. We define the closure of a set A ⊆ X, denoted cl(A) to be the norm closure of A. That is, the smallest closed set containingA with respect to the metric topology induced by the norm ‖ · ‖. A measurable function f : Ω → X is called a measurable selection of F if f(ω) ∈ F (ω) for all ω ∈ Ω a.e. That is f is a measurable selection of F if f(ω) ∈ F (ω) for all ω ∈ Ω except on a set of measure zero. We define the set S F = {f ∈ L [Ω, X] : f(ω) ∈ F (ω) a.e.}. It is easy to show that S p F is a closed subset of L [Ω, X] for 1 ≤ p ≤ ∞. Lemma 1.1 [1] Let F ∈ M[Ω, Kk(X)] and 1 ≤ p ≤ ∞. If S F is nonempty, then there exists a sequence (fi)i∈N contained in S p F such that F (ω) = cl{fi(ω)} for ω ∈ Ω. Corollary 1.2 [1] Let F1, F2 ∈ M[Ω, Kk(X)] and 1 ≤ p ≤ ∞. If S F1 = S p F2 = ∅ then F1(ω) = F2(ω), for all ω ∈ Ω. A brief discussion of the generalization of conditional expectations is necessary before we reach our first main result. This material is covered more comprehensively in [1]. Let W be a sub-σ-algebra of Σ, S F (W ) = {f ∈ L [Ω,W, μ,X] : f(ω) ∈ F (ω)a.e.}. (1.2) We define ISBN: 978-989-95079-6-8 IFSA-EUSFLAT 2009" @default.
- W66052330 created "2016-06-24" @default.
- W66052330 creator A5085574106 @default.
- W66052330 date "2009-01-01" @default.
- W66052330 modified "2023-09-23" @default.
- W66052330 title "Convergence Theorems for Generalized Random Variables and Martingales." @default.
- W66052330 cites W1564759251 @default.
- W66052330 cites W1995604417 @default.
- W66052330 cites W2009323802 @default.
- W66052330 cites W2024956689 @default.
- W66052330 cites W2046911477 @default.
- W66052330 cites W2145705229 @default.
- W66052330 cites W2790557240 @default.
- W66052330 hasPublicationYear "2009" @default.
- W66052330 type Work @default.
- W66052330 sameAs 66052330 @default.
- W66052330 citedByCount "1" @default.
- W66052330 crossrefType "proceedings-article" @default.
- W66052330 hasAuthorship W66052330A5085574106 @default.
- W66052330 hasConcept C105795698 @default.
- W66052330 hasConcept C118615104 @default.
- W66052330 hasConcept C122044880 @default.
- W66052330 hasConcept C122123141 @default.
- W66052330 hasConcept C122203268 @default.
- W66052330 hasConcept C132954091 @default.
- W66052330 hasConcept C134306372 @default.
- W66052330 hasConcept C149782125 @default.
- W66052330 hasConcept C177148314 @default.
- W66052330 hasConcept C186215838 @default.
- W66052330 hasConcept C202444582 @default.
- W66052330 hasConcept C28826006 @default.
- W66052330 hasConcept C33923547 @default.
- W66052330 hasConcept C48406656 @default.
- W66052330 hasConcept C52386014 @default.
- W66052330 hasConcept C89231458 @default.
- W66052330 hasConcept C95763700 @default.
- W66052330 hasConceptScore W66052330C105795698 @default.
- W66052330 hasConceptScore W66052330C118615104 @default.
- W66052330 hasConceptScore W66052330C122044880 @default.
- W66052330 hasConceptScore W66052330C122123141 @default.
- W66052330 hasConceptScore W66052330C122203268 @default.
- W66052330 hasConceptScore W66052330C132954091 @default.
- W66052330 hasConceptScore W66052330C134306372 @default.
- W66052330 hasConceptScore W66052330C149782125 @default.
- W66052330 hasConceptScore W66052330C177148314 @default.
- W66052330 hasConceptScore W66052330C186215838 @default.
- W66052330 hasConceptScore W66052330C202444582 @default.
- W66052330 hasConceptScore W66052330C28826006 @default.
- W66052330 hasConceptScore W66052330C33923547 @default.
- W66052330 hasConceptScore W66052330C48406656 @default.
- W66052330 hasConceptScore W66052330C52386014 @default.
- W66052330 hasConceptScore W66052330C89231458 @default.
- W66052330 hasConceptScore W66052330C95763700 @default.
- W66052330 hasLocation W660523301 @default.
- W66052330 hasOpenAccess W66052330 @default.
- W66052330 hasPrimaryLocation W660523301 @default.
- W66052330 hasRelatedWork W1970248935 @default.
- W66052330 hasRelatedWork W1972060582 @default.
- W66052330 hasRelatedWork W1972758482 @default.
- W66052330 hasRelatedWork W1981121741 @default.
- W66052330 hasRelatedWork W1989361912 @default.
- W66052330 hasRelatedWork W2048108215 @default.
- W66052330 hasRelatedWork W2072728236 @default.
- W66052330 hasRelatedWork W2250637603 @default.
- W66052330 hasRelatedWork W2272540632 @default.
- W66052330 hasRelatedWork W2324313799 @default.
- W66052330 hasRelatedWork W2330102992 @default.
- W66052330 hasRelatedWork W2357898447 @default.
- W66052330 hasRelatedWork W2357907686 @default.
- W66052330 hasRelatedWork W2370464019 @default.
- W66052330 hasRelatedWork W2371443643 @default.
- W66052330 hasRelatedWork W2383673045 @default.
- W66052330 hasRelatedWork W2411224289 @default.
- W66052330 hasRelatedWork W27313707 @default.
- W66052330 hasRelatedWork W3130737678 @default.
- W66052330 hasRelatedWork W3164254036 @default.
- W66052330 isParatext "false" @default.
- W66052330 isRetracted "false" @default.
- W66052330 magId "66052330" @default.
- W66052330 workType "article" @default.