Matches in SemOpenAlex for { <https://semopenalex.org/work/W66073516> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W66073516 abstract "In this thesis, we learn the structure of a hybrid Bayesian network (mixed continuous and discrete) for a small data set and learn the parameters. We segment the learning process in distinct steps and evaluate the possible options for each step. After a short introduction into the theory of Bayesian networks, we cover the topics: data preparation, algorithms, discretizing, tests for conditional independence, subnetworks, node ordering, directing arcs and learning parameters in sparse tables. After agreeing on a final quantified network, we compare our results to other networks modeling the same data and draw some conclusions about risk factors for and prediction op diabetes. The main conclusion is that learning hybrid Bayesian networks from a small data set is hard and requires much input from the modeler. Problems arise especially when testing for conditional independence in sparse frequency tables. Possible solutions are using different conditional independence tests, dividing the network into subnetworks, use a coarser discretization of the data and possible other options that we did not evaluate. The best option depends strongly on the data set you are working with, and a tailored solution must be made for each case." @default.
- W66073516 created "2016-06-24" @default.
- W66073516 creator A5083931961 @default.
- W66073516 date "2013-05-31" @default.
- W66073516 modified "2023-09-27" @default.
- W66073516 title "Remarks on learning hybrid Bayesian networks from data for medical research" @default.
- W66073516 cites W1524326598 @default.
- W66073516 cites W2131148034 @default.
- W66073516 cites W2132092612 @default.
- W66073516 cites W2155491684 @default.
- W66073516 cites W2159080219 @default.
- W66073516 cites W3083113686 @default.
- W66073516 cites W3201444869 @default.
- W66073516 hasPublicationYear "2013" @default.
- W66073516 type Work @default.
- W66073516 sameAs 66073516 @default.
- W66073516 citedByCount "1" @default.
- W66073516 countsByYear W660735162014 @default.
- W66073516 crossrefType "journal-article" @default.
- W66073516 hasAuthorship W66073516A5083931961 @default.
- W66073516 hasConcept C105795698 @default.
- W66073516 hasConcept C107673813 @default.
- W66073516 hasConcept C111919701 @default.
- W66073516 hasConcept C119857082 @default.
- W66073516 hasConcept C124101348 @default.
- W66073516 hasConcept C127413603 @default.
- W66073516 hasConcept C134306372 @default.
- W66073516 hasConcept C154945302 @default.
- W66073516 hasConcept C177264268 @default.
- W66073516 hasConcept C199360897 @default.
- W66073516 hasConcept C33724603 @default.
- W66073516 hasConcept C33923547 @default.
- W66073516 hasConcept C35651441 @default.
- W66073516 hasConcept C41008148 @default.
- W66073516 hasConcept C58489278 @default.
- W66073516 hasConcept C62611344 @default.
- W66073516 hasConcept C66938386 @default.
- W66073516 hasConcept C73000952 @default.
- W66073516 hasConcept C79772020 @default.
- W66073516 hasConcept C98045186 @default.
- W66073516 hasConceptScore W66073516C105795698 @default.
- W66073516 hasConceptScore W66073516C107673813 @default.
- W66073516 hasConceptScore W66073516C111919701 @default.
- W66073516 hasConceptScore W66073516C119857082 @default.
- W66073516 hasConceptScore W66073516C124101348 @default.
- W66073516 hasConceptScore W66073516C127413603 @default.
- W66073516 hasConceptScore W66073516C134306372 @default.
- W66073516 hasConceptScore W66073516C154945302 @default.
- W66073516 hasConceptScore W66073516C177264268 @default.
- W66073516 hasConceptScore W66073516C199360897 @default.
- W66073516 hasConceptScore W66073516C33724603 @default.
- W66073516 hasConceptScore W66073516C33923547 @default.
- W66073516 hasConceptScore W66073516C35651441 @default.
- W66073516 hasConceptScore W66073516C41008148 @default.
- W66073516 hasConceptScore W66073516C58489278 @default.
- W66073516 hasConceptScore W66073516C62611344 @default.
- W66073516 hasConceptScore W66073516C66938386 @default.
- W66073516 hasConceptScore W66073516C73000952 @default.
- W66073516 hasConceptScore W66073516C79772020 @default.
- W66073516 hasConceptScore W66073516C98045186 @default.
- W66073516 hasLocation W660735161 @default.
- W66073516 hasOpenAccess W66073516 @default.
- W66073516 hasPrimaryLocation W660735161 @default.
- W66073516 hasRelatedWork W1600755436 @default.
- W66073516 hasRelatedWork W1680005662 @default.
- W66073516 hasRelatedWork W1760941220 @default.
- W66073516 hasRelatedWork W1979972221 @default.
- W66073516 hasRelatedWork W2099900459 @default.
- W66073516 hasRelatedWork W2121278962 @default.
- W66073516 hasRelatedWork W2126321402 @default.
- W66073516 hasRelatedWork W2131944683 @default.
- W66073516 hasRelatedWork W2170112109 @default.
- W66073516 hasRelatedWork W2467156105 @default.
- W66073516 hasRelatedWork W2517195773 @default.
- W66073516 hasRelatedWork W2586777683 @default.
- W66073516 hasRelatedWork W2949394978 @default.
- W66073516 hasRelatedWork W2974856897 @default.
- W66073516 hasRelatedWork W2979638007 @default.
- W66073516 hasRelatedWork W3006140586 @default.
- W66073516 hasRelatedWork W3095898130 @default.
- W66073516 hasRelatedWork W3142151117 @default.
- W66073516 hasRelatedWork W3200863653 @default.
- W66073516 hasRelatedWork W3090434455 @default.
- W66073516 isParatext "false" @default.
- W66073516 isRetracted "false" @default.
- W66073516 magId "66073516" @default.
- W66073516 workType "article" @default.