Matches in SemOpenAlex for { <https://semopenalex.org/work/W66462017> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W66462017 endingPage "93" @default.
- W66462017 startingPage "85" @default.
- W66462017 abstract "Correlation filters for object detection use information about the appearance and shape of the object of interest. Therefore, detection performance degrades when the appearance of the object in the scene differs from the appearance used in the filter design process. This problem has been approached by utilizing composite filters designed from a training set containing known views of the object of interest. However, common composite filter design is usually carried out under the assumption that the ideal appearance and shape of the target are known. In this work we propose an algorithm for composite filter design using noisy training images. The algorithm is a modification of the class synthetic discriminant function technique that uses arbitrary filter impulse responses. Furthermore, filters can be adapted to achieve a prescribed discrimination capability for a class of backgrounds if a representative sample is known. Computer simulation results obtained with the proposed algorithm are presented and compared with those of common composite correlation filters.Keywordscorrelation filterspattern recognitioncomposite filters" @default.
- W66462017 created "2016-06-24" @default.
- W66462017 creator A5059876498 @default.
- W66462017 creator A5088295953 @default.
- W66462017 date "2012-01-01" @default.
- W66462017 modified "2023-09-28" @default.
- W66462017 title "Composite Correlation Filters for Detection of Geometrically Distorted Objects Using Noisy Training Images" @default.
- W66462017 cites W1601383540 @default.
- W66462017 cites W1969107967 @default.
- W66462017 cites W2014623061 @default.
- W66462017 cites W2040668536 @default.
- W66462017 cites W2043130034 @default.
- W66462017 cites W2047854604 @default.
- W66462017 cites W2074602561 @default.
- W66462017 cites W2074761716 @default.
- W66462017 cites W2080996178 @default.
- W66462017 cites W2081840747 @default.
- W66462017 cites W2094345362 @default.
- W66462017 cites W2105594236 @default.
- W66462017 cites W2152836168 @default.
- W66462017 cites W2158224488 @default.
- W66462017 cites W2161376274 @default.
- W66462017 cites W4205265922 @default.
- W66462017 doi "https://doi.org/10.1007/978-3-642-31149-9_9" @default.
- W66462017 hasPublicationYear "2012" @default.
- W66462017 type Work @default.
- W66462017 sameAs 66462017 @default.
- W66462017 citedByCount "1" @default.
- W66462017 countsByYear W664620172014 @default.
- W66462017 crossrefType "book-chapter" @default.
- W66462017 hasAuthorship W66462017A5059876498 @default.
- W66462017 hasAuthorship W66462017A5088295953 @default.
- W66462017 hasBestOaLocation W664620171 @default.
- W66462017 hasConcept C106131492 @default.
- W66462017 hasConcept C11413529 @default.
- W66462017 hasConcept C115961682 @default.
- W66462017 hasConcept C153180895 @default.
- W66462017 hasConcept C154945302 @default.
- W66462017 hasConcept C22597639 @default.
- W66462017 hasConcept C2776151529 @default.
- W66462017 hasConcept C31972630 @default.
- W66462017 hasConcept C41008148 @default.
- W66462017 hasConcept C50151734 @default.
- W66462017 hasConcept C78087231 @default.
- W66462017 hasConcept C78397625 @default.
- W66462017 hasConceptScore W66462017C106131492 @default.
- W66462017 hasConceptScore W66462017C11413529 @default.
- W66462017 hasConceptScore W66462017C115961682 @default.
- W66462017 hasConceptScore W66462017C153180895 @default.
- W66462017 hasConceptScore W66462017C154945302 @default.
- W66462017 hasConceptScore W66462017C22597639 @default.
- W66462017 hasConceptScore W66462017C2776151529 @default.
- W66462017 hasConceptScore W66462017C31972630 @default.
- W66462017 hasConceptScore W66462017C41008148 @default.
- W66462017 hasConceptScore W66462017C50151734 @default.
- W66462017 hasConceptScore W66462017C78087231 @default.
- W66462017 hasConceptScore W66462017C78397625 @default.
- W66462017 hasLocation W664620171 @default.
- W66462017 hasOpenAccess W66462017 @default.
- W66462017 hasPrimaryLocation W664620171 @default.
- W66462017 hasRelatedWork W1503579441 @default.
- W66462017 hasRelatedWork W1768477087 @default.
- W66462017 hasRelatedWork W1945933 @default.
- W66462017 hasRelatedWork W1981469140 @default.
- W66462017 hasRelatedWork W2002646872 @default.
- W66462017 hasRelatedWork W2007345165 @default.
- W66462017 hasRelatedWork W2020830528 @default.
- W66462017 hasRelatedWork W2021413461 @default.
- W66462017 hasRelatedWork W2022405895 @default.
- W66462017 hasRelatedWork W2049523442 @default.
- W66462017 hasRelatedWork W2058024626 @default.
- W66462017 hasRelatedWork W2074761716 @default.
- W66462017 hasRelatedWork W2081840747 @default.
- W66462017 hasRelatedWork W2128088258 @default.
- W66462017 hasRelatedWork W2130596347 @default.
- W66462017 hasRelatedWork W2155381113 @default.
- W66462017 hasRelatedWork W2158224488 @default.
- W66462017 hasRelatedWork W2593649751 @default.
- W66462017 hasRelatedWork W3182714009 @default.
- W66462017 hasRelatedWork W3180507047 @default.
- W66462017 isParatext "false" @default.
- W66462017 isRetracted "false" @default.
- W66462017 magId "66462017" @default.
- W66462017 workType "book-chapter" @default.