Matches in SemOpenAlex for { <https://semopenalex.org/work/W66712114> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W66712114 abstract "The pipe installations occasionally experience high amplitude vibration (Seismic Vibration). This vibration may initiate a new crack or propagate an existing crack. The monitoring of crack becomes more significant if the pipes carry hazardous fluids. The compliance technique is one of the commonly used methods to monitor crack growth in small size specimens. Crack monitoring in compact tension (CT), three point bend bar (TPBB) specimens are generally preferred for fracture toughness laboratory tests and crack monitoring is done using compliance technique. Crack compliance correlations are available for simple geometries. One of the primary objectives at present investigation is to develop γ-model for straight pipes. Gamma function is a variant of factorial function with its arguments shifted by 1. That is if n is a positive integer then Γ (n) = (n-1)!. The Gamma function is defined for every complex number whose real part is positive and greater than zero. Generally it is given by an integral given as, Γ(z)= ∫_0^∞▒〖t^(z-1) e^(-t) dt〗 Re (z) >0. This modified γ-model has been proposed to predict crack growth in through wall cracked pipe. Here t is replaced by number of cycles N. The parameter z is chosen in such a way that it becomes a non-dimensional parameter yet representing the properties that affect crack growth and since the integral is finite the value of integral is not Γ(z). The integral was assumed to be equal to a non-dimensional representing crack growth at the end of fixed cycles of loading. Generally fatigue crack growth depends on the initial crack length material properties and dimensions, loading conditions etc. So the non-dimensional parameter is chosen in such a way so as to include all those properties. So the formula for predicting the final crack length at the end of cycle is given as (ma_1)/w =∫_0^N▒〖N^(((ma_0)/w-1)) e^(-N) dN〗. Here m also a non-dimensional parameter whose value remain approximately constant for a given cycle interval. The value of m reduces with increase in the value of ΔK. The value of m changes with change in loading condition as well as crack length so 〖m=(E/σ_ys ×K_c/ΔK×K_min/K_max )〗^e. Hence it is needed to correlate parameter m with parameters like two crack driving forces ΔK and Kmax and with the material parameters plane stress fracture toughness (KC), modulus of elasticity (E) and yield stress (σys). Fatigue crack growth depends on both ΔK and Kmax in order to consider effects of mean stress. However, this may not take care of the large deformation that occurs during the loading of specimens/components. In case of pipes, additional difficulties arise due to geometric softening or hardening during the deformation process. However for pipes no such correlation is available so using γ-model we can predict the next incremented depth of crack for pipe.γ-model has also been applied on single edge notch (tension) SENT specimen and shows results are in good agreement with the experimental results for the SENT specimen. The variation is primarily due to experimental errors or other errors arising due faulty reading data and human error. This method is easy to interpret and less time consuming in successfully predicting crack with good degree of accuracy." @default.
- W66712114 created "2016-06-24" @default.
- W66712114 creator A5084467253 @default.
- W66712114 date "2011-06-06" @default.
- W66712114 modified "2023-09-27" @default.
- W66712114 title "Prediction of crack propagation using γ-model for through wall cracked Pipes" @default.
- W66712114 cites W133562379 @default.
- W66712114 cites W1495898891 @default.
- W66712114 cites W1525066649 @default.
- W66712114 cites W1574012461 @default.
- W66712114 cites W1969684208 @default.
- W66712114 cites W1980554058 @default.
- W66712114 cites W1995945562 @default.
- W66712114 cites W2000806663 @default.
- W66712114 cites W2004577388 @default.
- W66712114 cites W2007674745 @default.
- W66712114 cites W2053182302 @default.
- W66712114 cites W2055979513 @default.
- W66712114 cites W2061492505 @default.
- W66712114 cites W2113453038 @default.
- W66712114 cites W2147036174 @default.
- W66712114 cites W2493078721 @default.
- W66712114 cites W3159665014 @default.
- W66712114 hasPublicationYear "2011" @default.
- W66712114 type Work @default.
- W66712114 sameAs 66712114 @default.
- W66712114 citedByCount "0" @default.
- W66712114 crossrefType "dissertation" @default.
- W66712114 hasAuthorship W66712114A5084467253 @default.
- W66712114 hasConcept C101386981 @default.
- W66712114 hasConcept C121332964 @default.
- W66712114 hasConcept C127413603 @default.
- W66712114 hasConcept C14036430 @default.
- W66712114 hasConcept C153294291 @default.
- W66712114 hasConcept C159985019 @default.
- W66712114 hasConcept C180016635 @default.
- W66712114 hasConcept C180205008 @default.
- W66712114 hasConcept C186068551 @default.
- W66712114 hasConcept C188721877 @default.
- W66712114 hasConcept C192562407 @default.
- W66712114 hasConcept C198394728 @default.
- W66712114 hasConcept C24890656 @default.
- W66712114 hasConcept C33923547 @default.
- W66712114 hasConcept C59085676 @default.
- W66712114 hasConcept C62520636 @default.
- W66712114 hasConcept C66938386 @default.
- W66712114 hasConcept C69809600 @default.
- W66712114 hasConcept C75512024 @default.
- W66712114 hasConcept C78458016 @default.
- W66712114 hasConcept C86803240 @default.
- W66712114 hasConceptScore W66712114C101386981 @default.
- W66712114 hasConceptScore W66712114C121332964 @default.
- W66712114 hasConceptScore W66712114C127413603 @default.
- W66712114 hasConceptScore W66712114C14036430 @default.
- W66712114 hasConceptScore W66712114C153294291 @default.
- W66712114 hasConceptScore W66712114C159985019 @default.
- W66712114 hasConceptScore W66712114C180016635 @default.
- W66712114 hasConceptScore W66712114C180205008 @default.
- W66712114 hasConceptScore W66712114C186068551 @default.
- W66712114 hasConceptScore W66712114C188721877 @default.
- W66712114 hasConceptScore W66712114C192562407 @default.
- W66712114 hasConceptScore W66712114C198394728 @default.
- W66712114 hasConceptScore W66712114C24890656 @default.
- W66712114 hasConceptScore W66712114C33923547 @default.
- W66712114 hasConceptScore W66712114C59085676 @default.
- W66712114 hasConceptScore W66712114C62520636 @default.
- W66712114 hasConceptScore W66712114C66938386 @default.
- W66712114 hasConceptScore W66712114C69809600 @default.
- W66712114 hasConceptScore W66712114C75512024 @default.
- W66712114 hasConceptScore W66712114C78458016 @default.
- W66712114 hasConceptScore W66712114C86803240 @default.
- W66712114 hasLocation W667121141 @default.
- W66712114 hasOpenAccess W66712114 @default.
- W66712114 hasPrimaryLocation W667121141 @default.
- W66712114 hasRelatedWork W12594956 @default.
- W66712114 hasRelatedWork W1527732427 @default.
- W66712114 hasRelatedWork W1868260497 @default.
- W66712114 hasRelatedWork W1969819694 @default.
- W66712114 hasRelatedWork W1990642610 @default.
- W66712114 hasRelatedWork W2021639701 @default.
- W66712114 hasRelatedWork W2031606033 @default.
- W66712114 hasRelatedWork W2032915798 @default.
- W66712114 hasRelatedWork W2082837931 @default.
- W66712114 hasRelatedWork W2132674612 @default.
- W66712114 hasRelatedWork W2133181749 @default.
- W66712114 hasRelatedWork W2322207197 @default.
- W66712114 hasRelatedWork W2327283513 @default.
- W66712114 hasRelatedWork W2728480148 @default.
- W66712114 hasRelatedWork W2808595406 @default.
- W66712114 hasRelatedWork W2907097800 @default.
- W66712114 hasRelatedWork W2914971787 @default.
- W66712114 hasRelatedWork W3095599112 @default.
- W66712114 hasRelatedWork W766962012 @default.
- W66712114 hasRelatedWork W982603316 @default.
- W66712114 isParatext "false" @default.
- W66712114 isRetracted "false" @default.
- W66712114 magId "66712114" @default.
- W66712114 workType "dissertation" @default.