Matches in SemOpenAlex for { <https://semopenalex.org/work/W67504605> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W67504605 endingPage "200" @default.
- W67504605 startingPage "171" @default.
- W67504605 abstract "The goal of synthetic biology is to design and assemble synthetic systems that mimic biological systems. One of the most fundamental challenges in synthetic biology is to synthesize artificial biochemical systems, which we will call meta-biochemical systems, that provide the same functionality as biological nucleic acids-enzyme Enzymesystems, but that use a very limited number of types of molecules. The motivation for developing such synthetic biology systems is to enable a better understanding of the basic processes of natural biology, and also to enable re-engineering and programmability of synthetic versions of biological systems. One of the key aspects of modern nucleic acid biochemistry is its extensive use of protein enzymes that were originally evolved in cells to manipulate nucleic acids, and then later adapted by man for laboratory use. This practice provided powerful tools for manipulating nucleic acids, but also limited the extent of the programmability of the available chemistry for manipulating nucleic acids, since it is very difficult to predictively modify the behavior of protein enzymes. Meta-biochemical systems offer the possible advantage of being far easier to re-engineer and program for desired functionality. The approach taken here is to develop a biochemical system which we call meta-DNA (abbreviated as mDNA),Meta-DNA (mDNA) based entirely on strands of DNA as the only component molecules. Our work leverages prior work on the development of self-assembled DNA nanostructures (see [1, 2, 5, 9, 11, 18, 26] for excellent reviews of the field). Each base of a mDNA Meta-DNA (mDNA)is a DNA nanostructure. Our mDNA bases are paired similar to DNA bases, but have a much larger alphabet of bases, thereby providing increased power of base addressability. Our mDNA bases can be assembled to form flexible linear assemblies (single stranded mDNA) analogous to single stranded DNA, and can be hybridized to form stiff helical structures (duplex mDNA) analogous to double Double strand meta-DNA (dsmDNA) stranded DNA, and also can be denatured back to single stranded mDNA. Our work also leverages the abstract activatable tile model developed by Majumder et al. [12] and prior work on the development of enzyme-free isothermal Isothermalprotocols based on DNA hybridization and sophisticated strand displacement hybridization reactions (see [6, 15, 16, 19, 21, 27, 28]). We describe various isothermal hybridization reactions that manipulate our mDNA in powerful ways analogous to DNA–DNA reactions and the action of various enzymes on DNA. These operations on mDNA include (i) hybridization of single strand mDNA (ssmDNA)Single strand meta-DNA (ssmDNA) into a double strand mDNA (dsmDNA)Double strand meta-DNA (dsmDNA) and heat denaturation of a dsmDNA Double strand meta-DNA (dsmDNA)into its component ssmDNA Single strand meta-DNA (ssmDNA)(analogous to DNA hybridization and denaturation), (ii) strand displacement of one ssmDNA Single strand meta-DNA (ssmDNA)by another (similar to strand displacement in DNA), (iii) restriction cuts on the backbones of ssmDNA Single strand meta-DNA (ssmDNA)and dsmDNA Double strand meta-DNA (dsmDNA)(similar to the action of restriction enzymes on DNA), (iv) polymerization chain reactions that extend ssmDNA Single strand meta-DNA (ssmDNA)on a template to form a complete dsmDNA Double strand meta-DNA (dsmDNA)(similar to the action of polymerase enzyme on DNA), (v) isothermal denaturation of a dsmDNA Double strand meta-DNA (dsmDNA)into its component ssmDNA Single strand meta-DNA (ssmDNA)(like the activity of helicase enzyme on DNA) and (vi) an isothermal replicator reaction which exponentially amplifies ssmDNA Single strand meta-DNA (ssmDNA)strands (similar to the isothermal PCR reaction). We provide a formal model to describe the required properties and operations of our mDNA, and show that our proposed DNA nanostructures and hybridization reactions provide these properties and functionality." @default.
- W67504605 created "2016-06-24" @default.
- W67504605 creator A5001702263 @default.
- W67504605 creator A5007364145 @default.
- W67504605 creator A5028414708 @default.
- W67504605 creator A5090416420 @default.
- W67504605 date "2014-01-01" @default.
- W67504605 modified "2023-09-23" @default.
- W67504605 title "Meta-DNA: A DNA-Based Approach to Synthetic Biology" @default.
- W67504605 cites W1563754985 @default.
- W67504605 cites W1588681981 @default.
- W67504605 cites W1980301976 @default.
- W67504605 cites W1995499380 @default.
- W67504605 cites W1995531133 @default.
- W67504605 cites W2003318410 @default.
- W67504605 cites W2003403354 @default.
- W67504605 cites W2009108908 @default.
- W67504605 cites W2025056006 @default.
- W67504605 cites W2027522610 @default.
- W67504605 cites W2027838042 @default.
- W67504605 cites W2045459762 @default.
- W67504605 cites W2050630660 @default.
- W67504605 cites W2052348350 @default.
- W67504605 cites W2093098182 @default.
- W67504605 cites W2122211325 @default.
- W67504605 cites W2125673923 @default.
- W67504605 cites W2141906043 @default.
- W67504605 cites W2148304424 @default.
- W67504605 cites W2157446319 @default.
- W67504605 cites W2166879101 @default.
- W67504605 cites W4211177570 @default.
- W67504605 cites W4229775436 @default.
- W67504605 cites W4245432546 @default.
- W67504605 cites W4247528991 @default.
- W67504605 cites W1993747812 @default.
- W67504605 doi "https://doi.org/10.1007/978-94-017-9047-5_7" @default.
- W67504605 hasPublicationYear "2014" @default.
- W67504605 type Work @default.
- W67504605 sameAs 67504605 @default.
- W67504605 citedByCount "2" @default.
- W67504605 countsByYear W675046052020 @default.
- W67504605 countsByYear W675046052022 @default.
- W67504605 crossrefType "book-chapter" @default.
- W67504605 hasAuthorship W67504605A5001702263 @default.
- W67504605 hasAuthorship W67504605A5007364145 @default.
- W67504605 hasAuthorship W67504605A5028414708 @default.
- W67504605 hasAuthorship W67504605A5090416420 @default.
- W67504605 hasBestOaLocation W675046052 @default.
- W67504605 hasConcept C191908910 @default.
- W67504605 hasConcept C54355233 @default.
- W67504605 hasConcept C552990157 @default.
- W67504605 hasConcept C70721500 @default.
- W67504605 hasConcept C78458016 @default.
- W67504605 hasConcept C86803240 @default.
- W67504605 hasConceptScore W67504605C191908910 @default.
- W67504605 hasConceptScore W67504605C54355233 @default.
- W67504605 hasConceptScore W67504605C552990157 @default.
- W67504605 hasConceptScore W67504605C70721500 @default.
- W67504605 hasConceptScore W67504605C78458016 @default.
- W67504605 hasConceptScore W67504605C86803240 @default.
- W67504605 hasLocation W675046051 @default.
- W67504605 hasLocation W675046052 @default.
- W67504605 hasOpenAccess W67504605 @default.
- W67504605 hasPrimaryLocation W675046051 @default.
- W67504605 hasRelatedWork W1828955125 @default.
- W67504605 hasRelatedWork W1997770566 @default.
- W67504605 hasRelatedWork W2006264290 @default.
- W67504605 hasRelatedWork W2034736453 @default.
- W67504605 hasRelatedWork W2044499740 @default.
- W67504605 hasRelatedWork W2061542922 @default.
- W67504605 hasRelatedWork W2190176143 @default.
- W67504605 hasRelatedWork W2422215742 @default.
- W67504605 hasRelatedWork W4246963252 @default.
- W67504605 hasRelatedWork W4250812939 @default.
- W67504605 isParatext "false" @default.
- W67504605 isRetracted "false" @default.
- W67504605 magId "67504605" @default.
- W67504605 workType "book-chapter" @default.