Matches in SemOpenAlex for { <https://semopenalex.org/work/W67744807> ?p ?o ?g. }
- W67744807 abstract "Real Time Detection and Recognition of License Plate in Bengali Md. Mahmudul Hasan ∗1 , Md. Humayun Kabir †1 and M. Ameer Ali ‡2 Department of CSE, BUET, Dhaka, Bangladesh Department of CSE, East West University, Dhaka, Bangladesh Abstract Automatic license plate detection and recognition has numerous applications. A large number of schemes have already been proposed in order to make the detection and recognition process efficient. However, a very little work has been done on Bengali license plate recognition. Wide variation among the license plate patterns, complex background, and the difficulty in segmenting Bengali characters of Bangladeshi license plates make it inefficient to use the existing algorithms. In this paper, we propose a solution for Bengali license plate detection and recognition. We use three stages of conventional license plate recognition system. However, we propose new algorithm in each stage, which are effective for Bengali license plate detection and recognition. We tested our algorithms for over 250 images taken from the road. We achieve over 95% success in Bengali license plate recognition. Introduction Automated License Plate Recognition (ALPR) is one of the important module of Intelligent Transportation System (ITS). Research works [1] and [2] have listed many applications of ALPR, such as electronic payment systems (toll payment or parking), free-way and aerial management for traffic surveillance, recovering stolen cars, identifying cars with an open warrant for arrest, catching speeders by comparing the average time it takes to get from one stationary camera to another stationary camera, determining what cars do or do not belong to a parking garage, expediting parking by eliminating the need for human confirmation of parking passes etc. Most of the ALPR systems use three stages of processing [1]. In the first stage, the location of the license plate is determined from the input image. The input may be a video sequence or a still image. These image may be a binary, a grey scale, or a color image. Therefore, either binary or grey scale or color image processing technique is used in this stage. Morphological analysis [6], vertical and horizontal edge detection [16] [7], connected component analysis [17], spatial measurement [17], etc. are the most widely used binary image processing techniques. Image transformation [19], region segmentation [20], [3], hierarchical representations [18], etc. are widely used grey scale image processing techniques. Research works [11] and [12] used color image processing. Fuzzy set theory was used in research works [22] and [21]. In the second stage, the characters inside the license plate region are segmented. Binary and grey scale image processing techniques are mainly used to segment the characters. In the binary image processing techniques, several methods such as horizontal and vertical projection [24] [23] [11], mathematical morphology [25] [24], and contours [26] are used. Methods like local and adaptive threshold [28] [27], histogram processing [30] [29], classifiers [31] [32] etc. are the most commonly used grey scale image processing techniques to segment the characters. The third and the last stage in license plate detection and recognition system is the character recognition stage. Different types of neural networks, such as Hidden Markov Model (HMM) [35], Support Vector Machine (SVM) [18], and Artificial Neural Network (ANN) [36] [22] [30] are used to classify the characters. Other than neural networks, pattern or template matching techniques [34] [33] are also used to recognize the characters. Although a large number of research works have already been conducted on automatic license plate detection and recognition system, a generalized system is still missing [3]. Most of the existing systems perform well under some specific constraints. These constraints are certain distance from the camera [6] [7], speed of the vehicle [8], illumination conditions [9] [10], color of the vehicle [11] [12], camera positions [13] etc. Moreover, these ∗ mhasa004@ucr.edu. This author is now affiliated with Dept. of CSE, University of California, Riverside. † mhkabir@cse.buet.ac.bd ‡ ameer7302002@yahoo.com" @default.
- W67744807 created "2016-06-24" @default.
- W67744807 creator A5063715282 @default.
- W67744807 date "2013-11-25" @default.
- W67744807 modified "2023-09-26" @default.
- W67744807 title "Real Time Detection and Recognition of License Plate in Bengali" @default.
- W67744807 cites W1492457234 @default.
- W67744807 cites W1534935829 @default.
- W67744807 cites W1540278691 @default.
- W67744807 cites W1563297281 @default.
- W67744807 cites W1569100278 @default.
- W67744807 cites W1597931944 @default.
- W67744807 cites W1825077972 @default.
- W67744807 cites W1975174385 @default.
- W67744807 cites W1980113911 @default.
- W67744807 cites W1988277081 @default.
- W67744807 cites W2006544565 @default.
- W67744807 cites W2030326191 @default.
- W67744807 cites W2051812123 @default.
- W67744807 cites W2079826098 @default.
- W67744807 cites W2082625988 @default.
- W67744807 cites W2098692837 @default.
- W67744807 cites W2102331589 @default.
- W67744807 cites W2112536034 @default.
- W67744807 cites W2117399786 @default.
- W67744807 cites W2125936701 @default.
- W67744807 cites W2135427434 @default.
- W67744807 cites W2135449683 @default.
- W67744807 cites W2135737297 @default.
- W67744807 cites W2137600285 @default.
- W67744807 cites W2140511609 @default.
- W67744807 cites W2143437778 @default.
- W67744807 cites W2143756619 @default.
- W67744807 cites W2145023731 @default.
- W67744807 cites W2145621224 @default.
- W67744807 cites W2147375479 @default.
- W67744807 cites W2149736231 @default.
- W67744807 cites W2152366524 @default.
- W67744807 cites W2155482699 @default.
- W67744807 cites W2157153530 @default.
- W67744807 cites W2157665376 @default.
- W67744807 cites W2169320691 @default.
- W67744807 cites W2171786422 @default.
- W67744807 cites W1527290828 @default.
- W67744807 hasPublicationYear "2013" @default.
- W67744807 type Work @default.
- W67744807 sameAs 67744807 @default.
- W67744807 citedByCount "1" @default.
- W67744807 countsByYear W677448072014 @default.
- W67744807 crossrefType "journal-article" @default.
- W67744807 hasAuthorship W67744807A5063715282 @default.
- W67744807 hasConcept C111919701 @default.
- W67744807 hasConcept C127413603 @default.
- W67744807 hasConcept C136764020 @default.
- W67744807 hasConcept C145097563 @default.
- W67744807 hasConcept C154945302 @default.
- W67744807 hasConcept C19235068 @default.
- W67744807 hasConcept C22212356 @default.
- W67744807 hasConcept C2780560020 @default.
- W67744807 hasConcept C31972630 @default.
- W67744807 hasConcept C38652104 @default.
- W67744807 hasConcept C41008148 @default.
- W67744807 hasConcept C47796450 @default.
- W67744807 hasConceptScore W67744807C111919701 @default.
- W67744807 hasConceptScore W67744807C127413603 @default.
- W67744807 hasConceptScore W67744807C136764020 @default.
- W67744807 hasConceptScore W67744807C145097563 @default.
- W67744807 hasConceptScore W67744807C154945302 @default.
- W67744807 hasConceptScore W67744807C19235068 @default.
- W67744807 hasConceptScore W67744807C22212356 @default.
- W67744807 hasConceptScore W67744807C2780560020 @default.
- W67744807 hasConceptScore W67744807C31972630 @default.
- W67744807 hasConceptScore W67744807C38652104 @default.
- W67744807 hasConceptScore W67744807C41008148 @default.
- W67744807 hasConceptScore W67744807C47796450 @default.
- W67744807 hasLocation W677448071 @default.
- W67744807 hasOpenAccess W67744807 @default.
- W67744807 hasPrimaryLocation W677448071 @default.
- W67744807 hasRelatedWork W1974881140 @default.
- W67744807 hasRelatedWork W2085294191 @default.
- W67744807 hasRelatedWork W2161209294 @default.
- W67744807 hasRelatedWork W2562308138 @default.
- W67744807 hasRelatedWork W2579459456 @default.
- W67744807 hasRelatedWork W2896886654 @default.
- W67744807 hasRelatedWork W2902416607 @default.
- W67744807 hasRelatedWork W2914721739 @default.
- W67744807 hasRelatedWork W2971039087 @default.
- W67744807 hasRelatedWork W3024193103 @default.
- W67744807 hasRelatedWork W3024498581 @default.
- W67744807 hasRelatedWork W3087086696 @default.
- W67744807 hasRelatedWork W3102822077 @default.
- W67744807 hasRelatedWork W3124971012 @default.
- W67744807 hasRelatedWork W3139674200 @default.
- W67744807 hasRelatedWork W3159063178 @default.
- W67744807 hasRelatedWork W1551690579 @default.
- W67744807 hasRelatedWork W2185066996 @default.
- W67744807 hasRelatedWork W2187824370 @default.
- W67744807 hasRelatedWork W3155924366 @default.
- W67744807 isParatext "false" @default.
- W67744807 isRetracted "false" @default.