Matches in SemOpenAlex for { <https://semopenalex.org/work/W67805547> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W67805547 abstract "Vector quantization (VQ) is a efficient technique for data compression with a minimum distortion. VQ is widely used in applications as speech and image coding, speech recognition, and image retrieval. This paper presents a novel fast nearest- neighbor algorithm and shows its application to speech recognition. The proposed algorithm is based on a fast pre- selection that reduces the search to a limited number of code vectors. The presented results show that the computational cost of the VQ stage can be significantly reduced without affecting the performance of the speech recognizer." @default.
- W67805547 created "2016-06-24" @default.
- W67805547 creator A5004224082 @default.
- W67805547 date "2003-09-01" @default.
- W67805547 modified "2023-09-25" @default.
- W67805547 title "Nearest-neighbor search algorithms based on subcodebook selection and its application to speech recognition" @default.
- W67805547 cites W1634005169 @default.
- W67805547 cites W1700083040 @default.
- W67805547 cites W1975266213 @default.
- W67805547 cites W1980472784 @default.
- W67805547 cites W2026609130 @default.
- W67805547 cites W2035372682 @default.
- W67805547 cites W2045502823 @default.
- W67805547 cites W2098039338 @default.
- W67805547 cites W2101839068 @default.
- W67805547 cites W2111284499 @default.
- W67805547 cites W2138054245 @default.
- W67805547 cites W2160970351 @default.
- W67805547 cites W2169989102 @default.
- W67805547 doi "https://doi.org/10.21437/eurospeech.2003-684" @default.
- W67805547 hasPublicationYear "2003" @default.
- W67805547 type Work @default.
- W67805547 sameAs 67805547 @default.
- W67805547 citedByCount "0" @default.
- W67805547 crossrefType "proceedings-article" @default.
- W67805547 hasAuthorship W67805547A5004224082 @default.
- W67805547 hasConcept C113238511 @default.
- W67805547 hasConcept C11413529 @default.
- W67805547 hasConcept C153180895 @default.
- W67805547 hasConcept C154945302 @default.
- W67805547 hasConcept C28490314 @default.
- W67805547 hasConcept C41008148 @default.
- W67805547 hasConcept C81917197 @default.
- W67805547 hasConceptScore W67805547C113238511 @default.
- W67805547 hasConceptScore W67805547C11413529 @default.
- W67805547 hasConceptScore W67805547C153180895 @default.
- W67805547 hasConceptScore W67805547C154945302 @default.
- W67805547 hasConceptScore W67805547C28490314 @default.
- W67805547 hasConceptScore W67805547C41008148 @default.
- W67805547 hasConceptScore W67805547C81917197 @default.
- W67805547 hasLocation W678055471 @default.
- W67805547 hasOpenAccess W67805547 @default.
- W67805547 hasPrimaryLocation W678055471 @default.
- W67805547 hasRelatedWork W1902766772 @default.
- W67805547 hasRelatedWork W2055560876 @default.
- W67805547 hasRelatedWork W2146076056 @default.
- W67805547 hasRelatedWork W2167440101 @default.
- W67805547 hasRelatedWork W2371691720 @default.
- W67805547 hasRelatedWork W2378160586 @default.
- W67805547 hasRelatedWork W2883887418 @default.
- W67805547 hasRelatedWork W3021364800 @default.
- W67805547 hasRelatedWork W3203501097 @default.
- W67805547 hasRelatedWork W4286960226 @default.
- W67805547 isParatext "false" @default.
- W67805547 isRetracted "false" @default.
- W67805547 magId "67805547" @default.
- W67805547 workType "article" @default.