Matches in SemOpenAlex for { <https://semopenalex.org/work/W68132019> ?p ?o ?g. }
- W68132019 endingPage "259" @default.
- W68132019 startingPage "233" @default.
- W68132019 abstract "Large-scale relational learning becomes crucial for handling the huge amounts of structured data generated daily in many application domains ranging from computational biology or information retrieval, to natural language processing. In this paper, we present a new neural network architecture designed to embed multi-relational graphs into a flexible continuous vector space in which the original data is kept and enhanced. The network is trained to encode the semantics of these graphs in order to assign high probabilities to plausible components. We empirically show that it reaches competitive performance in link prediction on standard datasets from the literature as well as on data from a real-world knowledge base (WordNet). In addition, we present how our method can be applied to perform word-sense disambiguation in a context of open-text semantic parsing, where the goal is to learn to assign a structured meaning representation to almost any sentence of free text, demonstrating that it can scale up to tens of thousands of nodes and thousands of types of relation." @default.
- W68132019 created "2016-06-24" @default.
- W68132019 creator A5052390500 @default.
- W68132019 creator A5067483843 @default.
- W68132019 creator A5076635608 @default.
- W68132019 creator A5086198262 @default.
- W68132019 date "2013-05-30" @default.
- W68132019 modified "2023-10-13" @default.
- W68132019 title "A semantic matching energy function for learning with multi-relational data" @default.
- W68132019 cites W1561908597 @default.
- W68132019 cites W1585529040 @default.
- W68132019 cites W1910578190 @default.
- W68132019 cites W1963826206 @default.
- W68132019 cites W1974403130 @default.
- W68132019 cites W1979185006 @default.
- W68132019 cites W1981617416 @default.
- W68132019 cites W1983578042 @default.
- W68132019 cites W1994616650 @default.
- W68132019 cites W2013494846 @default.
- W68132019 cites W2087347434 @default.
- W68132019 cites W2099752825 @default.
- W68132019 cites W2102765684 @default.
- W68132019 cites W2106346128 @default.
- W68132019 cites W2110881686 @default.
- W68132019 cites W2125027602 @default.
- W68132019 cites W2157272674 @default.
- W68132019 cites W2161490907 @default.
- W68132019 cites W2171472464 @default.
- W68132019 doi "https://doi.org/10.1007/s10994-013-5363-6" @default.
- W68132019 hasPublicationYear "2013" @default.
- W68132019 type Work @default.
- W68132019 sameAs 68132019 @default.
- W68132019 citedByCount "523" @default.
- W68132019 countsByYear W681320192012 @default.
- W68132019 countsByYear W681320192013 @default.
- W68132019 countsByYear W681320192014 @default.
- W68132019 countsByYear W681320192015 @default.
- W68132019 countsByYear W681320192016 @default.
- W68132019 countsByYear W681320192017 @default.
- W68132019 countsByYear W681320192018 @default.
- W68132019 countsByYear W681320192019 @default.
- W68132019 countsByYear W681320192020 @default.
- W68132019 countsByYear W681320192021 @default.
- W68132019 countsByYear W681320192022 @default.
- W68132019 countsByYear W681320192023 @default.
- W68132019 crossrefType "journal-article" @default.
- W68132019 hasAuthorship W68132019A5052390500 @default.
- W68132019 hasAuthorship W68132019A5067483843 @default.
- W68132019 hasAuthorship W68132019A5076635608 @default.
- W68132019 hasAuthorship W68132019A5086198262 @default.
- W68132019 hasBestOaLocation W681320191 @default.
- W68132019 hasConcept C105795698 @default.
- W68132019 hasConcept C119857082 @default.
- W68132019 hasConcept C14036430 @default.
- W68132019 hasConcept C154945302 @default.
- W68132019 hasConcept C165064840 @default.
- W68132019 hasConcept C177877439 @default.
- W68132019 hasConcept C204321447 @default.
- W68132019 hasConcept C23123220 @default.
- W68132019 hasConcept C2778493491 @default.
- W68132019 hasConcept C33923547 @default.
- W68132019 hasConcept C41008148 @default.
- W68132019 hasConcept C5655090 @default.
- W68132019 hasConcept C78458016 @default.
- W68132019 hasConcept C86803240 @default.
- W68132019 hasConceptScore W68132019C105795698 @default.
- W68132019 hasConceptScore W68132019C119857082 @default.
- W68132019 hasConceptScore W68132019C14036430 @default.
- W68132019 hasConceptScore W68132019C154945302 @default.
- W68132019 hasConceptScore W68132019C165064840 @default.
- W68132019 hasConceptScore W68132019C177877439 @default.
- W68132019 hasConceptScore W68132019C204321447 @default.
- W68132019 hasConceptScore W68132019C23123220 @default.
- W68132019 hasConceptScore W68132019C2778493491 @default.
- W68132019 hasConceptScore W68132019C33923547 @default.
- W68132019 hasConceptScore W68132019C41008148 @default.
- W68132019 hasConceptScore W68132019C5655090 @default.
- W68132019 hasConceptScore W68132019C78458016 @default.
- W68132019 hasConceptScore W68132019C86803240 @default.
- W68132019 hasIssue "2" @default.
- W68132019 hasLocation W681320191 @default.
- W68132019 hasLocation W681320192 @default.
- W68132019 hasLocation W681320193 @default.
- W68132019 hasLocation W681320194 @default.
- W68132019 hasLocation W681320195 @default.
- W68132019 hasOpenAccess W68132019 @default.
- W68132019 hasPrimaryLocation W681320191 @default.
- W68132019 hasRelatedWork W2961085424 @default.
- W68132019 hasRelatedWork W3046775127 @default.
- W68132019 hasRelatedWork W3170094116 @default.
- W68132019 hasRelatedWork W4205958290 @default.
- W68132019 hasRelatedWork W4285260836 @default.
- W68132019 hasRelatedWork W4286629047 @default.
- W68132019 hasRelatedWork W4306321456 @default.
- W68132019 hasRelatedWork W4306674287 @default.
- W68132019 hasRelatedWork W4379525811 @default.
- W68132019 hasRelatedWork W4224009465 @default.
- W68132019 hasVolume "94" @default.