Matches in SemOpenAlex for { <https://semopenalex.org/work/W68161323> ?p ?o ?g. }
- W68161323 abstract "Bose–Einstein condensates with attractive interactions have stable 1D solutions in the form of bright solitary-waves. These solitary waves behave, in the absence of external potentials, like macroscopic quantum particles. This opens up a wide array of applications for the testing of quantum mechanical behaviours and precision measurement. Here we investigate these applications with particular focus on theinteractions of bright solitary-waves with narrow potential barriers.We first study bright solitons in the Gross–Pitaevskii equation as they are split on Gaussian and δ-function barriers, and then on Gaussian barriers in a low energysystem. We present analytic and numerical results determining the general region in which a soliton may not be split on a finite width potential barrier. Furthermore,we test the sensitivity of the system to quantum fluctuations.We then study fast-moving bright solitons colliding at a narrow Gaussian potential barrier. In the limiting case of a δ-function barrier, we show analytically that the relative norms of the outgoing waves depends sinusoidally on the relative phase of the incoming waves, and determine whether the outgoing waves are bright solitons. We use numerical simulations to show that outside the high velocity limit nonlinear effects introduce a skew to the phase-dependence.Finally, we use these results to analyse the process of soliton interferometry. We develop analyses of both toroidal and harmonic trapping geometries for Mach–Zehnder interferometry, and then two implementations of a toroidal Sagnac inter- ferometer, also giving the analytical determination of the Sagnac phase in such systems. These results are again verified numerically. In the Mach–Zehnder case, we again probe the systems sensitivity to quantum fluctuations." @default.
- W68161323 created "2016-06-24" @default.
- W68161323 creator A5016398810 @default.
- W68161323 date "2014-01-01" @default.
- W68161323 modified "2023-09-26" @default.
- W68161323 title "Soliton dynamics in the Gross–Pitaevskii equation : splitting, collisions and interferometry" @default.
- W68161323 cites W1493632573 @default.
- W68161323 cites W1509452990 @default.
- W68161323 cites W1649252162 @default.
- W68161323 cites W1708785370 @default.
- W68161323 cites W1968773458 @default.
- W68161323 cites W1969461889 @default.
- W68161323 cites W1969721398 @default.
- W68161323 cites W1970474373 @default.
- W68161323 cites W1973878334 @default.
- W68161323 cites W1974759958 @default.
- W68161323 cites W1975052060 @default.
- W68161323 cites W1978786817 @default.
- W68161323 cites W1979700341 @default.
- W68161323 cites W1980113027 @default.
- W68161323 cites W1989473135 @default.
- W68161323 cites W1989563849 @default.
- W68161323 cites W1991230891 @default.
- W68161323 cites W1993075623 @default.
- W68161323 cites W1993957475 @default.
- W68161323 cites W1995335464 @default.
- W68161323 cites W2005940272 @default.
- W68161323 cites W2007790339 @default.
- W68161323 cites W2015419021 @default.
- W68161323 cites W2015428108 @default.
- W68161323 cites W2020108535 @default.
- W68161323 cites W2020819605 @default.
- W68161323 cites W2021761336 @default.
- W68161323 cites W2023285495 @default.
- W68161323 cites W2024861820 @default.
- W68161323 cites W2025354537 @default.
- W68161323 cites W2030669316 @default.
- W68161323 cites W2034012235 @default.
- W68161323 cites W2034976587 @default.
- W68161323 cites W2035386001 @default.
- W68161323 cites W2035742995 @default.
- W68161323 cites W2036287475 @default.
- W68161323 cites W2036595722 @default.
- W68161323 cites W2041765423 @default.
- W68161323 cites W2042248542 @default.
- W68161323 cites W2043473232 @default.
- W68161323 cites W2043722014 @default.
- W68161323 cites W2046250318 @default.
- W68161323 cites W2046317590 @default.
- W68161323 cites W2047834497 @default.
- W68161323 cites W2049189198 @default.
- W68161323 cites W2051869423 @default.
- W68161323 cites W2053424414 @default.
- W68161323 cites W2055193821 @default.
- W68161323 cites W2056706766 @default.
- W68161323 cites W2057321078 @default.
- W68161323 cites W2058798441 @default.
- W68161323 cites W2060752822 @default.
- W68161323 cites W2065286491 @default.
- W68161323 cites W2066602608 @default.
- W68161323 cites W2069981294 @default.
- W68161323 cites W2070220126 @default.
- W68161323 cites W2074802507 @default.
- W68161323 cites W2074919599 @default.
- W68161323 cites W2075844292 @default.
- W68161323 cites W2077509884 @default.
- W68161323 cites W2082268133 @default.
- W68161323 cites W2082548326 @default.
- W68161323 cites W2083531734 @default.
- W68161323 cites W2095412490 @default.
- W68161323 cites W2096509963 @default.
- W68161323 cites W2099329681 @default.
- W68161323 cites W2102182691 @default.
- W68161323 cites W2112940941 @default.
- W68161323 cites W2113954958 @default.
- W68161323 cites W2115600080 @default.
- W68161323 cites W2118575947 @default.
- W68161323 cites W2119860121 @default.
- W68161323 cites W2126203235 @default.
- W68161323 cites W2132639490 @default.
- W68161323 cites W2141495545 @default.
- W68161323 cites W2146325683 @default.
- W68161323 cites W2147378526 @default.
- W68161323 cites W2165411015 @default.
- W68161323 cites W2170797774 @default.
- W68161323 cites W231625903 @default.
- W68161323 cites W2329841088 @default.
- W68161323 cites W2461228432 @default.
- W68161323 cites W2562972486 @default.
- W68161323 cites W2596685564 @default.
- W68161323 cites W3101451096 @default.
- W68161323 cites W3101807719 @default.
- W68161323 cites W3103061112 @default.
- W68161323 cites W3106474807 @default.
- W68161323 cites W3123728878 @default.
- W68161323 hasPublicationYear "2014" @default.
- W68161323 type Work @default.
- W68161323 sameAs 68161323 @default.
- W68161323 citedByCount "0" @default.
- W68161323 crossrefType "dissertation" @default.