Matches in SemOpenAlex for { <https://semopenalex.org/work/W68246004> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W68246004 endingPage "71" @default.
- W68246004 startingPage "61" @default.
- W68246004 abstract "Internet traffic prediction is an important task for many applications, such as adaptive applications, congestion control, admission control, anomaly detection and bandwidth allocation. In addition, efficient methods of resource management can be used to gain performance and reduce costs. The popularity of the newest deep learning methods has been increasing in several areas, but there is a lack of studies concerning time series prediction. This paper compares two different artificial neural network approaches for the Internet traffic forecast. One is a Multilayer Perceptron (MLP) and the other is a deep learning Stacked Autoencoder (SAE). It is shown herein how a simpler neural network model, such as the MLP, can work even better than a more complex model, such as the SAE, for Internet traffic prediction." @default.
- W68246004 created "2016-06-24" @default.
- W68246004 creator A5020672420 @default.
- W68246004 creator A5060533530 @default.
- W68246004 creator A5073502418 @default.
- W68246004 date "2014-01-01" @default.
- W68246004 modified "2023-10-17" @default.
- W68246004 title "Multilayer Perceptron and Stacked Autoencoder for Internet Traffic Prediction" @default.
- W68246004 cites W1998399571 @default.
- W68246004 cites W2020188567 @default.
- W68246004 cites W2025768430 @default.
- W68246004 cites W2037710502 @default.
- W68246004 cites W2110798204 @default.
- W68246004 cites W2113312949 @default.
- W68246004 cites W2136922672 @default.
- W68246004 cites W2137983211 @default.
- W68246004 cites W2167088383 @default.
- W68246004 cites W2170046923 @default.
- W68246004 cites W4231109964 @default.
- W68246004 doi "https://doi.org/10.1007/978-3-662-44917-2_6" @default.
- W68246004 hasPublicationYear "2014" @default.
- W68246004 type Work @default.
- W68246004 sameAs 68246004 @default.
- W68246004 citedByCount "19" @default.
- W68246004 countsByYear W682460042016 @default.
- W68246004 countsByYear W682460042017 @default.
- W68246004 countsByYear W682460042018 @default.
- W68246004 countsByYear W682460042019 @default.
- W68246004 countsByYear W682460042020 @default.
- W68246004 countsByYear W682460042021 @default.
- W68246004 countsByYear W682460042022 @default.
- W68246004 countsByYear W682460042023 @default.
- W68246004 crossrefType "book-chapter" @default.
- W68246004 hasAuthorship W68246004A5020672420 @default.
- W68246004 hasAuthorship W68246004A5060533530 @default.
- W68246004 hasAuthorship W68246004A5073502418 @default.
- W68246004 hasBestOaLocation W682460041 @default.
- W68246004 hasConcept C101738243 @default.
- W68246004 hasConcept C108583219 @default.
- W68246004 hasConcept C110875604 @default.
- W68246004 hasConcept C119857082 @default.
- W68246004 hasConcept C124101348 @default.
- W68246004 hasConcept C136764020 @default.
- W68246004 hasConcept C154945302 @default.
- W68246004 hasConcept C15744967 @default.
- W68246004 hasConcept C179717631 @default.
- W68246004 hasConcept C2776257435 @default.
- W68246004 hasConcept C2780586970 @default.
- W68246004 hasConcept C31258907 @default.
- W68246004 hasConcept C41008148 @default.
- W68246004 hasConcept C50644808 @default.
- W68246004 hasConcept C77805123 @default.
- W68246004 hasConcept C79403827 @default.
- W68246004 hasConceptScore W68246004C101738243 @default.
- W68246004 hasConceptScore W68246004C108583219 @default.
- W68246004 hasConceptScore W68246004C110875604 @default.
- W68246004 hasConceptScore W68246004C119857082 @default.
- W68246004 hasConceptScore W68246004C124101348 @default.
- W68246004 hasConceptScore W68246004C136764020 @default.
- W68246004 hasConceptScore W68246004C154945302 @default.
- W68246004 hasConceptScore W68246004C15744967 @default.
- W68246004 hasConceptScore W68246004C179717631 @default.
- W68246004 hasConceptScore W68246004C2776257435 @default.
- W68246004 hasConceptScore W68246004C2780586970 @default.
- W68246004 hasConceptScore W68246004C31258907 @default.
- W68246004 hasConceptScore W68246004C41008148 @default.
- W68246004 hasConceptScore W68246004C50644808 @default.
- W68246004 hasConceptScore W68246004C77805123 @default.
- W68246004 hasConceptScore W68246004C79403827 @default.
- W68246004 hasLocation W682460041 @default.
- W68246004 hasLocation W682460042 @default.
- W68246004 hasLocation W682460043 @default.
- W68246004 hasOpenAccess W68246004 @default.
- W68246004 hasPrimaryLocation W682460041 @default.
- W68246004 hasRelatedWork W2669956259 @default.
- W68246004 hasRelatedWork W2939353110 @default.
- W68246004 hasRelatedWork W3165463024 @default.
- W68246004 hasRelatedWork W3211546796 @default.
- W68246004 hasRelatedWork W4223943233 @default.
- W68246004 hasRelatedWork W4231994957 @default.
- W68246004 hasRelatedWork W4287178339 @default.
- W68246004 hasRelatedWork W4312200629 @default.
- W68246004 hasRelatedWork W4327774331 @default.
- W68246004 hasRelatedWork W4380075502 @default.
- W68246004 isParatext "false" @default.
- W68246004 isRetracted "false" @default.
- W68246004 magId "68246004" @default.
- W68246004 workType "book-chapter" @default.