Matches in SemOpenAlex for { <https://semopenalex.org/work/W68289795> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W68289795 abstract "A two-dimensional BEM scheme is presented for the numerical modeling of the ventilated flow past a surfacepiercing hydrofoil. Fully nonlinear boundary conditions are applied on the free-surface which allows for the accurate modeling of the jets generated on the wetted boundaries as a result of the passage of the hydrofoil through the airwater interface or the free-surface. The scheme is validated through a comparison with self-similar solutions in the case of non-ventilating symmetric water-entry and with experiments in the case of ventilating entry. In addition, a multiphase RANS model (FLUENT based) is used to gauge the effects of viscosity and the formation of spray. Results are presented for the fully wetted and ventilating cases with and without the effects of gravity, simulating the effect of a change in the Froude number. Results are also presented for the case of a hydrofoil in rotational motion, simulating the ventilation characteristics at the radial section of a typical surface-piercing propeller. The fully nonlinear scheme presented here is a step towards assessing the errors associated with some of the linear free-surface assumptions made in a 3D BEM tool (PROPCAV) for the performance prediction of surface-piercing propellers. INTRODUCTION Surface-piercing propellers (hereafter referred to as SP propellers) and waterjets are the two commonly used systems of propulsion for high-speed crafts (vessels that operate routinely at speeds in excess of 30 knots [1], [2]). Cavitation and its detrimental effects of loss of thrust, noise, vibration and erosion present a formidable barrier that precludes the use of subcavitating or supercavitating propeller based systems. Even though it is difficult to draw a clear demarcation between the two modes of propulsion in terms of feasibility, current trends indicate the prevalence of SP pro∗Address all correspondence to this author. pellers for high-speed crafts with displacements below 50 t while waterjets are used for crafts with higher displacements [3]. The elements of the surface-piercing propulsion system are arranged in such a manner that when the vessel is underway, only a part of the propeller is submerged during a cycle of revolution (the actual level of submergence depends on the trim of the vessel and other factors). SP propellers are also referred to as partially-submerged propellers because of this feature. Some of the advantages offered by such an arrangement, which in turn translate to better propulsive efficiency and extended range of operation are : (i) there is a considerable reduction in the appendage drag due to the absence of submerged components like shafts, struts, etc. (ii) a reduction in the detrimental effects of cavitation as it is replaced by natural ventilation, and (iii) the absence of diameter limitations imposed by draft and hull clearance requirements. In spite of being an efficient system of propulsion, the design of partially submerged propellers has often been performed on a trial-and-error basis with full-scale propellers or based on experimental results from model tests [4]. Both these methods have their disadvantages (i) design based on full-scale propellers do not provide information about the dynamic blade loads nor the average propeller forces [4], (ii) model test based designs are prohibitively expensive to carry out and are prone to scale effects [5, 6], and are also influenced by the test techniques [7, 8]. The widespread use of SP propellers underscores the importance of developing reliable numerical tools for predicting their performance. The numerical modeling of the real flow associated with a SP propeller is too difficult a task to undertake. Young & Kinnas (2003) [9, 10] note the difficulties (i) insufficient understanding of the physical phenomena involved at the entry and exit phases of the blade passage through the air-water interface, (ii) insuffi-" @default.
- W68289795 created "2016-06-24" @default.
- W68289795 creator A5013848872 @default.
- W68289795 creator A5049347658 @default.
- W68289795 date "2009-08-01" @default.
- W68289795 modified "2023-10-16" @default.
- W68289795 title "A boundary element method for the strongly nonlinear analysis of surface-piercing hydrofoils" @default.
- W68289795 cites W1180683120 @default.
- W68289795 cites W1493086194 @default.
- W68289795 cites W1548656198 @default.
- W68289795 cites W1582121999 @default.
- W68289795 cites W1931300119 @default.
- W68289795 cites W1972963005 @default.
- W68289795 cites W1975964311 @default.
- W68289795 cites W2017834701 @default.
- W68289795 cites W2051783622 @default.
- W68289795 cites W2121923531 @default.
- W68289795 cites W2122968044 @default.
- W68289795 cites W2140695351 @default.
- W68289795 cites W2146745539 @default.
- W68289795 cites W2148388560 @default.
- W68289795 cites W2203983722 @default.
- W68289795 cites W2231377350 @default.
- W68289795 cites W2470511378 @default.
- W68289795 cites W2492939105 @default.
- W68289795 cites W2506137285 @default.
- W68289795 cites W2570750685 @default.
- W68289795 cites W3122106573 @default.
- W68289795 cites W573225621 @default.
- W68289795 cites W650371143 @default.
- W68289795 cites W2144836810 @default.
- W68289795 hasPublicationYear "2009" @default.
- W68289795 type Work @default.
- W68289795 sameAs 68289795 @default.
- W68289795 citedByCount "0" @default.
- W68289795 crossrefType "journal-article" @default.
- W68289795 hasAuthorship W68289795A5013848872 @default.
- W68289795 hasAuthorship W68289795A5049347658 @default.
- W68289795 hasBestOaLocation W682897951 @default.
- W68289795 hasConcept C121332964 @default.
- W68289795 hasConcept C127413603 @default.
- W68289795 hasConcept C134306372 @default.
- W68289795 hasConcept C135628077 @default.
- W68289795 hasConcept C158622935 @default.
- W68289795 hasConcept C2524010 @default.
- W68289795 hasConcept C2776799497 @default.
- W68289795 hasConcept C33923547 @default.
- W68289795 hasConcept C62354387 @default.
- W68289795 hasConcept C62520636 @default.
- W68289795 hasConcept C63632240 @default.
- W68289795 hasConcept C66938386 @default.
- W68289795 hasConceptScore W68289795C121332964 @default.
- W68289795 hasConceptScore W68289795C127413603 @default.
- W68289795 hasConceptScore W68289795C134306372 @default.
- W68289795 hasConceptScore W68289795C135628077 @default.
- W68289795 hasConceptScore W68289795C158622935 @default.
- W68289795 hasConceptScore W68289795C2524010 @default.
- W68289795 hasConceptScore W68289795C2776799497 @default.
- W68289795 hasConceptScore W68289795C33923547 @default.
- W68289795 hasConceptScore W68289795C62354387 @default.
- W68289795 hasConceptScore W68289795C62520636 @default.
- W68289795 hasConceptScore W68289795C63632240 @default.
- W68289795 hasConceptScore W68289795C66938386 @default.
- W68289795 hasLocation W682897951 @default.
- W68289795 hasOpenAccess W68289795 @default.
- W68289795 hasPrimaryLocation W682897951 @default.
- W68289795 hasRelatedWork W2016126681 @default.
- W68289795 hasRelatedWork W2039322717 @default.
- W68289795 hasRelatedWork W2168157278 @default.
- W68289795 hasRelatedWork W2329465847 @default.
- W68289795 hasRelatedWork W2369349394 @default.
- W68289795 hasRelatedWork W2376275171 @default.
- W68289795 hasRelatedWork W2490435863 @default.
- W68289795 hasRelatedWork W2497428848 @default.
- W68289795 hasRelatedWork W3123981042 @default.
- W68289795 hasRelatedWork W608796411 @default.
- W68289795 isParatext "false" @default.
- W68289795 isRetracted "false" @default.
- W68289795 magId "68289795" @default.
- W68289795 workType "article" @default.