Matches in SemOpenAlex for { <https://semopenalex.org/work/W6832394> ?p ?o ?g. }
Showing items 1 to 49 of
49
with 100 items per page.
- W6832394 endingPage "10" @default.
- W6832394 startingPage "7" @default.
- W6832394 abstract "Publisher Summary This chapter discusses that for the best co-approximation in a Hilbert space the existence and uniqueness sets are the closed flats. V. Klee conjectured that there are nonconvex existence and uniqueness sets for the best approximation in infinite dimensional Hilbert spaces. Although several results on this subject have been proved within the last two decades, no definite answer can yet be found. For the best co-approximation, the set-valued mapping RK: E → K is said to be the metric co-projection from E onto K. For a Hilbert space H, AK: H → H has an obvious geometrical interpretation. The chapter presents the proof of Hilbert theorem." @default.
- W6832394 created "2016-06-24" @default.
- W6832394 creator A5016560067 @default.
- W6832394 creator A5070219199 @default.
- W6832394 date "1980-01-01" @default.
- W6832394 modified "2023-09-25" @default.
- W6832394 title "ON THE BEST CO-APPROXIMATION IN A HILBERT SPACE" @default.
- W6832394 cites W1988583482 @default.
- W6832394 doi "https://doi.org/10.1016/b978-0-12-213650-4.50007-6" @default.
- W6832394 hasPublicationYear "1980" @default.
- W6832394 type Work @default.
- W6832394 sameAs 6832394 @default.
- W6832394 citedByCount "8" @default.
- W6832394 countsByYear W68323942020 @default.
- W6832394 countsByYear W68323942021 @default.
- W6832394 crossrefType "book-chapter" @default.
- W6832394 hasAuthorship W6832394A5016560067 @default.
- W6832394 hasAuthorship W6832394A5070219199 @default.
- W6832394 hasConcept C138885662 @default.
- W6832394 hasConcept C202444582 @default.
- W6832394 hasConcept C2778572836 @default.
- W6832394 hasConcept C33923547 @default.
- W6832394 hasConcept C41895202 @default.
- W6832394 hasConcept C62799726 @default.
- W6832394 hasConceptScore W6832394C138885662 @default.
- W6832394 hasConceptScore W6832394C202444582 @default.
- W6832394 hasConceptScore W6832394C2778572836 @default.
- W6832394 hasConceptScore W6832394C33923547 @default.
- W6832394 hasConceptScore W6832394C41895202 @default.
- W6832394 hasConceptScore W6832394C62799726 @default.
- W6832394 hasLocation W68323941 @default.
- W6832394 hasOpenAccess W6832394 @default.
- W6832394 hasPrimaryLocation W68323941 @default.
- W6832394 hasRelatedWork W1482827353 @default.
- W6832394 hasRelatedWork W1606423697 @default.
- W6832394 hasRelatedWork W1989920940 @default.
- W6832394 hasRelatedWork W2088892953 @default.
- W6832394 hasRelatedWork W2137171564 @default.
- W6832394 hasRelatedWork W2946733187 @default.
- W6832394 hasRelatedWork W3096340483 @default.
- W6832394 hasRelatedWork W3116894630 @default.
- W6832394 hasRelatedWork W4249099142 @default.
- W6832394 hasRelatedWork W4249580765 @default.
- W6832394 isParatext "false" @default.
- W6832394 isRetracted "false" @default.
- W6832394 magId "6832394" @default.
- W6832394 workType "book-chapter" @default.