Matches in SemOpenAlex for { <https://semopenalex.org/work/W68331380> ?p ?o ?g. }
- W68331380 abstract "Inference and optimization algorithms usually have hyperparameters that require to be tuned in order to achieve efficiency. We consider here different approaches to efficiently automatize the hyperparameter tuning step by learning online the structure of the addressed problem. The first half of this thesis is devoted to the problem of hyperparameter tuning in machine learning, where recent results suggest that with current generation hardware, the optimal allocation of computing time includes more hyperparameter exploration than has been typical in the literature. After presenting and improving the generic sequential model-based optimization (SMBO) framework, we show that SMBO successfully applies to the challenging task of tuning the numerous hyperparameters of deep belief networks, outperforming expert manual tuning. To close the first part, we propose an algorithm that performs tuning {it across} datasets, further closing the gap between automatized tuners and human experts by mimicking the memory that humans have of past experiments with the same algorithm on different datasets. The second half of this thesis deals with adaptive Markov chain Monte Carlo (MCMC) algorithms, sampling-based algorithms that explore complex probability distributions while self-tuning their internal parameters on the fly. This second part starts by describing the Pierre Auger observatory (henceforth Auger), a large-scale particle physics experiment dedicated to the observation of atmospheric showers triggered by cosmic rays. These showers are wide cascades of elementary particles raining on the surface of Earth, resulting from charged nuclei hitting our atmosphere with the highest energies ever seen. The analysis of Auger data motivated our study of adaptive MCMC, since the latter can cope with the complex and high-dimensional generative models involved in Auger. We derive the first part of the Auger generative model and introduce a procedure to perform inference on shower parameters that requires only this bottom part. Our generative model inherently suffers from permutation invariance, thus leading to {it label switching}. Label-switching is a common difficulty in MCMC inference which makes marginal inference useless because of redundant modes of the target distribution. After reviewing previously existing solutions to the label switching problem, we propose AMOR, the first adaptive MCMC algorithm with online relabeling. We empirically demonstrate the benefits of adaptivity and show how AMOR satisfyingly applies to the problem of inference in our Auger model. Finally, we prove consistency results for a variant of AMOR. Our proof provides a generic framework for the analysis of other relabeling algorithms and unveils interesting links between relabeling algorithms and vector quantization." @default.
- W68331380 created "2016-06-24" @default.
- W68331380 creator A5062461687 @default.
- W68331380 date "2012-11-19" @default.
- W68331380 modified "2023-09-23" @default.
- W68331380 title "Towards adaptive learning and inference - Applications to hyperparameter tuning and astroparticle physics" @default.
- W68331380 cites W102487131 @default.
- W68331380 cites W1494853941 @default.
- W68331380 cites W1539091547 @default.
- W68331380 cites W1555637134 @default.
- W68331380 cites W1588206936 @default.
- W68331380 cites W16292936 @default.
- W68331380 cites W1794206249 @default.
- W68331380 cites W1965520710 @default.
- W68331380 cites W1978900605 @default.
- W68331380 cites W1985093013 @default.
- W68331380 cites W1995713768 @default.
- W68331380 cites W2019486793 @default.
- W68331380 cites W2025468928 @default.
- W68331380 cites W2030229367 @default.
- W68331380 cites W2042436556 @default.
- W68331380 cites W2047221353 @default.
- W68331380 cites W2047978125 @default.
- W68331380 cites W2049633694 @default.
- W68331380 cites W2072128103 @default.
- W68331380 cites W2087101057 @default.
- W68331380 cites W2087347434 @default.
- W68331380 cites W2095590702 @default.
- W68331380 cites W2096878708 @default.
- W68331380 cites W2097998348 @default.
- W68331380 cites W2105813220 @default.
- W68331380 cites W2106706098 @default.
- W68331380 cites W2112796928 @default.
- W68331380 cites W2118858186 @default.
- W68331380 cites W2123649031 @default.
- W68331380 cites W2131241448 @default.
- W68331380 cites W2135973421 @default.
- W68331380 cites W2136922672 @default.
- W68331380 cites W2144161366 @default.
- W68331380 cites W2144550025 @default.
- W68331380 cites W2145094598 @default.
- W68331380 cites W2151238122 @default.
- W68331380 cites W2170078560 @default.
- W68331380 cites W2182000050 @default.
- W68331380 cites W2184852195 @default.
- W68331380 cites W2296319761 @default.
- W68331380 cites W2402456051 @default.
- W68331380 cites W2752966631 @default.
- W68331380 cites W2911964244 @default.
- W68331380 cites W2951665052 @default.
- W68331380 cites W3015241628 @default.
- W68331380 cites W314780631 @default.
- W68331380 cites W66982283 @default.
- W68331380 hasPublicationYear "2012" @default.
- W68331380 type Work @default.
- W68331380 sameAs 68331380 @default.
- W68331380 citedByCount "1" @default.
- W68331380 countsByYear W683313802015 @default.
- W68331380 crossrefType "dissertation" @default.
- W68331380 hasAuthorship W68331380A5062461687 @default.
- W68331380 hasConcept C10485038 @default.
- W68331380 hasConcept C107673813 @default.
- W68331380 hasConcept C111350023 @default.
- W68331380 hasConcept C111919701 @default.
- W68331380 hasConcept C11413529 @default.
- W68331380 hasConcept C119857082 @default.
- W68331380 hasConcept C12267149 @default.
- W68331380 hasConcept C154945302 @default.
- W68331380 hasConcept C2776214188 @default.
- W68331380 hasConcept C2777472644 @default.
- W68331380 hasConcept C41008148 @default.
- W68331380 hasConcept C68339613 @default.
- W68331380 hasConcept C8642999 @default.
- W68331380 hasConceptScore W68331380C10485038 @default.
- W68331380 hasConceptScore W68331380C107673813 @default.
- W68331380 hasConceptScore W68331380C111350023 @default.
- W68331380 hasConceptScore W68331380C111919701 @default.
- W68331380 hasConceptScore W68331380C11413529 @default.
- W68331380 hasConceptScore W68331380C119857082 @default.
- W68331380 hasConceptScore W68331380C12267149 @default.
- W68331380 hasConceptScore W68331380C154945302 @default.
- W68331380 hasConceptScore W68331380C2776214188 @default.
- W68331380 hasConceptScore W68331380C2777472644 @default.
- W68331380 hasConceptScore W68331380C41008148 @default.
- W68331380 hasConceptScore W68331380C68339613 @default.
- W68331380 hasConceptScore W68331380C8642999 @default.
- W68331380 hasLocation W683313801 @default.
- W68331380 hasOpenAccess W68331380 @default.
- W68331380 hasPrimaryLocation W683313801 @default.
- W68331380 hasRelatedWork W1756919134 @default.
- W68331380 hasRelatedWork W1797876566 @default.
- W68331380 hasRelatedWork W1812797591 @default.
- W68331380 hasRelatedWork W2015638782 @default.
- W68331380 hasRelatedWork W2358163403 @default.
- W68331380 hasRelatedWork W2609418570 @default.
- W68331380 hasRelatedWork W2788591903 @default.
- W68331380 hasRelatedWork W2808208825 @default.
- W68331380 hasRelatedWork W2912860240 @default.
- W68331380 hasRelatedWork W2936102489 @default.
- W68331380 hasRelatedWork W2939308308 @default.