Matches in SemOpenAlex for { <https://semopenalex.org/work/W68795600> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W68795600 abstract "Fractionally integrated processes ARFIMA(p,d,q), introduced by Granger (1980) and Hosking (1981) independently, offer a useful tool to model the second order dependence structure (autocovariance and autocorrelation functions) of an observed time series. The literature is rich of paper on identification of the data generating process (dgp, from now on) and estimation of the parameters: Yajima (1985), Taqqu (1986) and Dahlhaus (1988), Dahlhaus (1989) wrote papers on parametric estimate of the memory parameter d, whereas Hurst (1951), Geweke and Porter-Hudak (1983), Higuchi (1988), Robinson (1995) and Hurvich (1998) developed semi-parametric estimation methods. It is not possible to define the best method, according to the situation each method offers advantages and drawbacks. Parametric estimators are asymptotically Normal and they are the most efficient, however in the case of misspecification of the model the estimates might be dramatically biased. On the other hand, semi-parametric estimators offer the possibility of estimating the long memory parameter from the short memory part with the drawback of a slower convergence rate (o(n -1/2)) or less) than with parametric techniques (o(n-1)). Moreover, Agiakloglou (1993) showed that the GPH Geweke and Porter-Hudak (1983) is biased in presence of arma parameter near the non-stationary area.A generalisation of ARFIMA processes are the Gegenbauer processes, introduced by Hosking (1981) and then studied by Woodward (1989), Woodward (1998), Giraitis (1995), Smallwood (2004), Sadek (2004) and Caporale (2006). Also in this case parametric and semi-parametric technique are available in the literature. One the main problem is the maximization in a multidimensional space of the likelihood function because there is not a close form and the existing numerical procedures are quite burdensome. Semi-parametric procedures play and important role to compute good starting values to maximize the likelihood function and to identify the order of the dgp.In the last years many bootstrap methods for time series have been developed, such as the model-based resampling, the block bootstrap (Kunsch, 1989), the autoregressive-aided periodogram bootstrap (Kreiss, 2003), the local bootstrap (Paparoditis, 1999), the sieve bootstrap (Kreiss, 1992), the parametric bootstrap (Andrews, 2006), the kernel bootstrap (Franke, 1992,Dahlhaus, 1996) and the phase scrambling (Theiler, 1992b). Bootstrap methods for time series have been widely used to build confidence intervals especially when asymptotic theory does not provide satisfactory results (Efron, 1979, Efron, 1982, Efron, 1987, Efron, 1987a, Hall, 1988, Hall, 1992, Arteche, 2005). The problem is still open when we want to replicate the dependence structure of a long memory process such as ARFIMA(p,d,q).In this thesis we develop a new bootstrap method for time series, the ACF bootstrap, based on a result of Ramsey (1974), that generates the surrogate series from the observed autocorrelation function. The thesis is divided in five chapters: the first two chapters review some literature, the last three chapters are new contributions.The first chapter reviews the literature on long memory processes, the properties of their sample autocorrelation and autocovariance functions, the most common parametric and semi-parametric estimators and, shortly, Gegenbauer processes. In the second chapter, we introduce briefly some bootstrap methods for time series.In Chapter 3 we introduce the new bootstrap method. We apply the ACF bootstrap to improve the performance of semi-parametric estimators for the memory parameter d for ARFIMA(0,d,0) processes in terms of smaller standard error, smaller mean squared error and better coverage for confidence intervals. Since the condition of Gaussianity of the observed process is very restrictive, we show, by means of Monte Carlo simulation, that the method is consistent even relaxing this hypothesis. In particular the method seems to be robust against fat tails and itshape asymmetry}. Another application is building confidence intervals for the memory parameter d. For the parametric Whittle estimator, the confidence intervals based on the bootstrap distribution have a closer coverage to the theoretical level if the time series is relatively short (n=128,300). For semi-parametric estimators, applying bootstrap improves coverage of confidence intervals for d when the dgp is a ARFIMA(1,d,0) process.In Chapter 4 we study the asymptotic behaviour of sample autocovariance and autocorrelation functions of a long memory processes. This results are useful to give a theoretical support for the consistency of the method in replicating long memory.Last, in Chapter 5, we propose an algorithm to estimate non-parametrically the parameters of a Gegenbauer process with one and two peaks in the spectral density. The bootstrap method will be useful to give an estimate of the distribution of the frequency parameter eta. Its asymptotic distribution is given for the estimators proposed by Chung (1996) and Sadek (2004) but it is very complicate and difficult to handle. The main aim is proposing a method to identify seasonal persistences and provide starting values for maximize a (penalized) likelihood function." @default.
- W68795600 created "2016-06-24" @default.
- W68795600 creator A5023524437 @default.
- W68795600 date "2008-01-01" @default.
- W68795600 modified "2023-09-24" @default.
- W68795600 title "Bootstrap and approximation methods for long memory processes" @default.
- W68795600 hasPublicationYear "2008" @default.
- W68795600 type Work @default.
- W68795600 sameAs 68795600 @default.
- W68795600 citedByCount "0" @default.
- W68795600 crossrefType "journal-article" @default.
- W68795600 hasAuthorship W68795600A5023524437 @default.
- W68795600 hasConcept C102366305 @default.
- W68795600 hasConcept C102519508 @default.
- W68795600 hasConcept C105795698 @default.
- W68795600 hasConcept C117251300 @default.
- W68795600 hasConcept C1297061 @default.
- W68795600 hasConcept C134306372 @default.
- W68795600 hasConcept C143724316 @default.
- W68795600 hasConcept C149782125 @default.
- W68795600 hasConcept C151730666 @default.
- W68795600 hasConcept C175706884 @default.
- W68795600 hasConcept C185429906 @default.
- W68795600 hasConcept C24574437 @default.
- W68795600 hasConcept C28826006 @default.
- W68795600 hasConcept C2986394398 @default.
- W68795600 hasConcept C33923547 @default.
- W68795600 hasConcept C5297727 @default.
- W68795600 hasConcept C86803240 @default.
- W68795600 hasConcept C88271906 @default.
- W68795600 hasConcept C91602232 @default.
- W68795600 hasConceptScore W68795600C102366305 @default.
- W68795600 hasConceptScore W68795600C102519508 @default.
- W68795600 hasConceptScore W68795600C105795698 @default.
- W68795600 hasConceptScore W68795600C117251300 @default.
- W68795600 hasConceptScore W68795600C1297061 @default.
- W68795600 hasConceptScore W68795600C134306372 @default.
- W68795600 hasConceptScore W68795600C143724316 @default.
- W68795600 hasConceptScore W68795600C149782125 @default.
- W68795600 hasConceptScore W68795600C151730666 @default.
- W68795600 hasConceptScore W68795600C175706884 @default.
- W68795600 hasConceptScore W68795600C185429906 @default.
- W68795600 hasConceptScore W68795600C24574437 @default.
- W68795600 hasConceptScore W68795600C28826006 @default.
- W68795600 hasConceptScore W68795600C2986394398 @default.
- W68795600 hasConceptScore W68795600C33923547 @default.
- W68795600 hasConceptScore W68795600C5297727 @default.
- W68795600 hasConceptScore W68795600C86803240 @default.
- W68795600 hasConceptScore W68795600C88271906 @default.
- W68795600 hasConceptScore W68795600C91602232 @default.
- W68795600 hasLocation W687956001 @default.
- W68795600 hasOpenAccess W68795600 @default.
- W68795600 hasPrimaryLocation W687956001 @default.
- W68795600 hasRelatedWork W1947880883 @default.
- W68795600 hasRelatedWork W1979187570 @default.
- W68795600 hasRelatedWork W1989452885 @default.
- W68795600 hasRelatedWork W2019881929 @default.
- W68795600 hasRelatedWork W2038612832 @default.
- W68795600 hasRelatedWork W2247872566 @default.
- W68795600 hasRelatedWork W2256443717 @default.
- W68795600 hasRelatedWork W2403747119 @default.
- W68795600 hasRelatedWork W2661655577 @default.
- W68795600 hasRelatedWork W2744999226 @default.
- W68795600 hasRelatedWork W2790952564 @default.
- W68795600 hasRelatedWork W2792371344 @default.
- W68795600 hasRelatedWork W2801961925 @default.
- W68795600 hasRelatedWork W2883447105 @default.
- W68795600 hasRelatedWork W2886644436 @default.
- W68795600 hasRelatedWork W3121325235 @default.
- W68795600 hasRelatedWork W3121537460 @default.
- W68795600 hasRelatedWork W3124805208 @default.
- W68795600 hasRelatedWork W3147212292 @default.
- W68795600 hasRelatedWork W3123795567 @default.
- W68795600 isParatext "false" @default.
- W68795600 isRetracted "false" @default.
- W68795600 magId "68795600" @default.
- W68795600 workType "article" @default.