Matches in SemOpenAlex for { <https://semopenalex.org/work/W68930901> ?p ?o ?g. }
- W68930901 abstract "Technology is changing the way in which music is produced, distributed and consumed. An aspiring musician in West Africa with a basic desktop computer, an inexpensive microphone, and free audio editing software can record and produce reasonably high-quality music. She can post her songs on any number of musically-oriented social networks (e.g., MySpace, Last.fm, eMusic) making them accessible to the public. A music consumer in San Diego can then rapidly download her songs over a high-bandwidth Internet connection and store them on a 160-gigabyte personal MP3 player. As a result, millions of songs are now instantly available to millions of people. This 'Age of Music Proliferation' has created the need for novel music search and discovery technologies that move beyond the query-by-artist-name or browse-by-genre paradigms. In this dissertation, we describe the architecture for a semantic music discovery engine. This engine uses information that is both collected from surveys, annotation games and music-related websites, and extracted through the analysis of audio signals and web documents. Together, these five sources of data provide a rich representation that is based on both the audio content and social context of the music. We show how this representation can be used for various music discovery purposes with the Computer Audition Lab (CAL) Music Discovery Engine prototype. This web application provides a music query-by-description interface for music retrieval, recommends music based on acoustic similarity, and generates personalized radio stations. The backbone of the discovery engine is an autotagging system that can both annotate novel audio tracks with semantically meaningful tags (i.e. a short text-based token) and retrieve relevant tracks from a database of unlabeled audio content given a text-based query. We consider the related tasks of content-based audio annotation and retrieval as one supervised multi-class, multi-label problem in which we model the joint probability of acoustic features and tags. For each tag in a vocabulary, we use an annotated corpus of songs to train a Gaussian mixture model (GMM) over an audio feature space. We estimate the parameters of the model using the weighted mixture hierarchies Expectation Maximization algorithm. When compared against standard parameter estimation techniques, this algorithm is more scalable and produces density estimates that result in better end performance. The quality of the music annotations produced by our system is comparable with the performance of humans on the same task. Our query-by-semantic-description system can retrieve appropriate songs for a large number of musically relevant tags. We also show that our audition system is general by learning a model that can annotate and retrieve sound effects. We then present Listen Game, an online, multiplayer music annotation game that measures the semantic relationship between songs and tags. In the normal mode, a player sees a list of semantically related tags (e.g., genres, instruments, emotions, usages) and is asked to pick the best and worst tag to describe a song. In the freestyle mode, a user is asked to suggest a tag that describes the song. Each player receives real-time feedback (e.g., a score) that reflects the amount of agreement amongst all of the players. Using the data collected during a two-week pilot study, we show that we can effectively train our autotagging system. We compare our autotagging system and annotation game with three other approaches to collecting tags for music (conducting a survey, harvesting social tags, and mining web documents). The comparison includes a discussion of both scalability (financial cost, human involvement, and computational resources) and quality (cold start problem, popularity bias, strong vs. weak labeling, tag vocabulary structure and size, and annotation accuracy). Each approach is evaluated using a tag-based music information retrieval task. Using this task, we are able to quantify the effect of popularity bias for each approach by making use of a subset of more popular (short head) songs and a set of less popular (long tail) songs. Lastly, we explore three algorithms for combining semantic information about music from multiple data sources: RankBoost, kernel combination SVM, and a novel algorithm which is called Calibrated Score Averaging (CSA). CSA learns a non-parametric function that maps the output of each data source to a probability and then combines these probabilities. We demonstrate empirically that the combining of multiple sources is superior to any of the individual sources alone, when considering the task of tag-based retrieval. While the three combination algorithms perform equivalently on average, they each show superior performance for some of the tags in our vocabulary." @default.
- W68930901 created "2016-06-24" @default.
- W68930901 creator A5003709708 @default.
- W68930901 creator A5005989028 @default.
- W68930901 creator A5038246567 @default.
- W68930901 date "2008-01-01" @default.
- W68930901 modified "2023-09-23" @default.
- W68930901 title "Design and development of a semantic music discovery engine" @default.
- W68930901 cites W131293899 @default.
- W68930901 cites W1487393892 @default.
- W68930901 cites W1500060856 @default.
- W68930901 cites W1502275556 @default.
- W68930901 cites W1505382086 @default.
- W68930901 cites W1507955343 @default.
- W68930901 cites W1508121828 @default.
- W68930901 cites W1510073064 @default.
- W68930901 cites W1520047127 @default.
- W68930901 cites W1523697508 @default.
- W68930901 cites W1537603892 @default.
- W68930901 cites W15539827 @default.
- W68930901 cites W1560013842 @default.
- W68930901 cites W1562529351 @default.
- W68930901 cites W1579748941 @default.
- W68930901 cites W1606243610 @default.
- W68930901 cites W16345605 @default.
- W68930901 cites W172133891 @default.
- W68930901 cites W174251063 @default.
- W68930901 cites W185985056 @default.
- W68930901 cites W190117771 @default.
- W68930901 cites W1990014053 @default.
- W68930901 cites W2012474104 @default.
- W68930901 cites W2020842694 @default.
- W68930901 cites W2042659457 @default.
- W68930901 cites W2046390908 @default.
- W68930901 cites W2047221353 @default.
- W68930901 cites W2047411082 @default.
- W68930901 cites W2099111195 @default.
- W68930901 cites W2100753110 @default.
- W68930901 cites W2107756083 @default.
- W68930901 cites W2109607073 @default.
- W68930901 cites W2110681820 @default.
- W68930901 cites W2112861900 @default.
- W68930901 cites W2116157705 @default.
- W68930901 cites W2116373735 @default.
- W68930901 cites W2121310556 @default.
- W68930901 cites W2123497171 @default.
- W68930901 cites W2125238156 @default.
- W68930901 cites W2127711253 @default.
- W68930901 cites W2131244036 @default.
- W68930901 cites W2133824856 @default.
- W68930901 cites W2133999183 @default.
- W68930901 cites W2136564616 @default.
- W68930901 cites W2138899136 @default.
- W68930901 cites W2141282920 @default.
- W68930901 cites W2145295623 @default.
- W68930901 cites W2146632282 @default.
- W68930901 cites W2151531457 @default.
- W68930901 cites W2154473523 @default.
- W68930901 cites W2156336347 @default.
- W68930901 cites W2158275940 @default.
- W68930901 cites W2159413814 @default.
- W68930901 cites W2159561775 @default.
- W68930901 cites W2161937612 @default.
- W68930901 cites W2162124943 @default.
- W68930901 cites W2169375076 @default.
- W68930901 cites W2175108110 @default.
- W68930901 cites W2295394636 @default.
- W68930901 cites W2401775237 @default.
- W68930901 cites W2406901689 @default.
- W68930901 cites W2407683213 @default.
- W68930901 cites W2539879360 @default.
- W68930901 cites W2729906263 @default.
- W68930901 cites W30220727 @default.
- W68930901 cites W3127686677 @default.
- W68930901 cites W3134246028 @default.
- W68930901 cites W41198089 @default.
- W68930901 cites W56995320 @default.
- W68930901 cites W7343789 @default.
- W68930901 cites W96341207 @default.
- W68930901 cites W2164296866 @default.
- W68930901 cites W2797816625 @default.
- W68930901 hasPublicationYear "2008" @default.
- W68930901 type Work @default.
- W68930901 sameAs 68930901 @default.
- W68930901 citedByCount "5" @default.
- W68930901 countsByYear W689309012016 @default.
- W68930901 crossrefType "journal-article" @default.
- W68930901 hasAuthorship W68930901A5003709708 @default.
- W68930901 hasAuthorship W68930901A5005989028 @default.
- W68930901 hasAuthorship W68930901A5038246567 @default.
- W68930901 hasConcept C110875604 @default.
- W68930901 hasConcept C136764020 @default.
- W68930901 hasConcept C41008148 @default.
- W68930901 hasConcept C49774154 @default.
- W68930901 hasConceptScore W68930901C110875604 @default.
- W68930901 hasConceptScore W68930901C136764020 @default.
- W68930901 hasConceptScore W68930901C41008148 @default.
- W68930901 hasConceptScore W68930901C49774154 @default.
- W68930901 hasOpenAccess W68930901 @default.
- W68930901 hasRelatedWork W145476019 @default.