Matches in SemOpenAlex for { <https://semopenalex.org/work/W69257054> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W69257054 endingPage "465" @default.
- W69257054 startingPage "458" @default.
- W69257054 abstract "This paper describes an evolutionary algorithm approach to learning Bayesian networks from incomplete data. This problem is characterized by a huge solution space with a highly multimodal landscape. State-of-the-art approaches all involve using deterministic approaches such as the expectation-maximization algorithm. These approaches are guaranteed to find local maxima, but do not explore the landscape for other modes. Our approach evolves the structure of the network and the missing data. We use a factorial design to choose a good set of parameters for selection, crossover, and mutation. We show that our algorithm produces accurate results for a classification problem with missing data." @default.
- W69257054 created "2016-06-24" @default.
- W69257054 creator A5003592910 @default.
- W69257054 creator A5072260552 @default.
- W69257054 creator A5088168293 @default.
- W69257054 date "1999-07-13" @default.
- W69257054 modified "2023-09-26" @default.
- W69257054 title "Learning Bayesian networks from incomplete data using evolutionary algorithms" @default.
- W69257054 cites W1505477995 @default.
- W69257054 cites W1514758555 @default.
- W69257054 cites W1523680690 @default.
- W69257054 cites W1549765610 @default.
- W69257054 cites W1566045017 @default.
- W69257054 cites W1568834902 @default.
- W69257054 cites W1593793857 @default.
- W69257054 cites W2008906462 @default.
- W69257054 cites W2044758663 @default.
- W69257054 cites W2045656233 @default.
- W69257054 cites W2049633694 @default.
- W69257054 cites W2123950145 @default.
- W69257054 cites W2132434674 @default.
- W69257054 cites W2156728410 @default.
- W69257054 cites W2159080219 @default.
- W69257054 cites W2161632986 @default.
- W69257054 cites W2170112109 @default.
- W69257054 cites W2333269907 @default.
- W69257054 cites W2797772566 @default.
- W69257054 cites W2964166327 @default.
- W69257054 cites W3129711340 @default.
- W69257054 cites W380264756 @default.
- W69257054 hasPublicationYear "1999" @default.
- W69257054 type Work @default.
- W69257054 sameAs 69257054 @default.
- W69257054 citedByCount "25" @default.
- W69257054 countsByYear W692570542012 @default.
- W69257054 countsByYear W692570542014 @default.
- W69257054 countsByYear W692570542016 @default.
- W69257054 countsByYear W692570542020 @default.
- W69257054 crossrefType "proceedings-article" @default.
- W69257054 hasAuthorship W69257054A5003592910 @default.
- W69257054 hasAuthorship W69257054A5072260552 @default.
- W69257054 hasAuthorship W69257054A5088168293 @default.
- W69257054 hasConcept C107673813 @default.
- W69257054 hasConcept C11413529 @default.
- W69257054 hasConcept C119857082 @default.
- W69257054 hasConcept C122507166 @default.
- W69257054 hasConcept C154945302 @default.
- W69257054 hasConcept C159149176 @default.
- W69257054 hasConcept C177264268 @default.
- W69257054 hasConcept C199360897 @default.
- W69257054 hasConcept C33724603 @default.
- W69257054 hasConcept C41008148 @default.
- W69257054 hasConcept C58489278 @default.
- W69257054 hasConcept C9357733 @default.
- W69257054 hasConceptScore W69257054C107673813 @default.
- W69257054 hasConceptScore W69257054C11413529 @default.
- W69257054 hasConceptScore W69257054C119857082 @default.
- W69257054 hasConceptScore W69257054C122507166 @default.
- W69257054 hasConceptScore W69257054C154945302 @default.
- W69257054 hasConceptScore W69257054C159149176 @default.
- W69257054 hasConceptScore W69257054C177264268 @default.
- W69257054 hasConceptScore W69257054C199360897 @default.
- W69257054 hasConceptScore W69257054C33724603 @default.
- W69257054 hasConceptScore W69257054C41008148 @default.
- W69257054 hasConceptScore W69257054C58489278 @default.
- W69257054 hasConceptScore W69257054C9357733 @default.
- W69257054 hasLocation W692570541 @default.
- W69257054 hasOpenAccess W69257054 @default.
- W69257054 hasPrimaryLocation W692570541 @default.
- W69257054 hasRelatedWork W1497256448 @default.
- W69257054 hasRelatedWork W1505477995 @default.
- W69257054 hasRelatedWork W1523680690 @default.
- W69257054 hasRelatedWork W1524326598 @default.
- W69257054 hasRelatedWork W1566045017 @default.
- W69257054 hasRelatedWork W1583923142 @default.
- W69257054 hasRelatedWork W1586003574 @default.
- W69257054 hasRelatedWork W1593793857 @default.
- W69257054 hasRelatedWork W1983690667 @default.
- W69257054 hasRelatedWork W1988814833 @default.
- W69257054 hasRelatedWork W2008906462 @default.
- W69257054 hasRelatedWork W2049633694 @default.
- W69257054 hasRelatedWork W2099900459 @default.
- W69257054 hasRelatedWork W2129046665 @default.
- W69257054 hasRelatedWork W2129999935 @default.
- W69257054 hasRelatedWork W2132434674 @default.
- W69257054 hasRelatedWork W2159080219 @default.
- W69257054 hasRelatedWork W2161632986 @default.
- W69257054 hasRelatedWork W2170112109 @default.
- W69257054 hasRelatedWork W2307253082 @default.
- W69257054 isParatext "false" @default.
- W69257054 isRetracted "false" @default.
- W69257054 magId "69257054" @default.
- W69257054 workType "article" @default.