Matches in SemOpenAlex for { <https://semopenalex.org/work/W69528246> ?p ?o ?g. }
- W69528246 abstract "A theoretical and experimental investigation of the transport parameters of particles flowing through porous media has been made. These parameters are the particle advective velocity, longitudinal dispersion coefficient, and filter coefficient. Both theoretical and experimental results are limited to flows with low Reynolds number (linear, laminar flow) and high Peclet number (advection dominates diffusion). The theoretical development used dimensionless numbers to define the transport parameters and incorporated them into an advective-dispersion equation describing particle transport. A relationship for unfavorable filtration due to repulsive double layer interactions is proposed.A solution to the complete advective-dispersion equation for particle transport was derived for the case of a constant filter coefficient. This solution when compared to a similar solution previously derived for solute transport, showed that for small filtration the solutions were identical except for the exponential decay factor due to filtration. A numerical model was developed for the case of a variable filter coefficient.Flow experiments were conducted in a 1.5 m vertical column with sand (geo. mean diameter = 381 micron), with suspensions of polystyrene latex particles (three cases, mean diameter = 0.1, 1.4 and 2.8 micron), and with NaCl as the electrolyte (0.4 mM < Ionic strength < 2.1 mM). The range of Peclet number studied was 1.26 x 10^4 to 2.00 x 10^6. The measurement of the particle concentrations during passage of a displacement front provided the necessary data to determine the particle transport parameters.The particle advective velocities for the three different sized particles was found to range approximately from 0 to 5.4% greater than the solute velocity, and these values were within a few percent of predictions based on particle and pore radii.The longitudinal dispersion coefficient for the three different sized particles was found to be a function of only the advective velocity of the particles and grain diameter of the porous bed which confirmed the dimensional analysis argument and closely matched previous solute work.A dimensional analysis argument for the relationship between the favorable and unfavorable filter coefficient was proposed to be a function of the ratio of the particle diffusion length of an advecting particle and the double layer thickness (which in turn depends on the ionic strength of the water). A wide range of filtration data (Brownian to advective particles) was empirically fitted using this dimensionless number.The effects of ionic strength on particle transport were found to be either minimal or separable from the hydraulic variables. For advection, effects of changing ionic strength were analyzed as changes in the effective particle radius and calculations made using this apparent particle radius matched experimental results. For dispersion, an increase of a factor of 6 in the ionic strength increased the longitudinal dispersion by a factor of 1.2." @default.
- W69528246 created "2016-06-24" @default.
- W69528246 creator A5051439235 @default.
- W69528246 date "1992-05-01" @default.
- W69528246 modified "2023-09-27" @default.
- W69528246 title "Particle transport in flow through porous media: advection, longitudinal dispersion, and filtration" @default.
- W69528246 cites W10917034 @default.
- W69528246 cites W1489042497 @default.
- W69528246 cites W1499976760 @default.
- W69528246 cites W1548636304 @default.
- W69528246 cites W1561478372 @default.
- W69528246 cites W1580900885 @default.
- W69528246 cites W1877231675 @default.
- W69528246 cites W1965284444 @default.
- W69528246 cites W1969555006 @default.
- W69528246 cites W1976140685 @default.
- W69528246 cites W1982247117 @default.
- W69528246 cites W1983049002 @default.
- W69528246 cites W1989631256 @default.
- W69528246 cites W1992009584 @default.
- W69528246 cites W1993748042 @default.
- W69528246 cites W1998550244 @default.
- W69528246 cites W2000754396 @default.
- W69528246 cites W2005139016 @default.
- W69528246 cites W2008978615 @default.
- W69528246 cites W2010945250 @default.
- W69528246 cites W2025003176 @default.
- W69528246 cites W2025903538 @default.
- W69528246 cites W2044224504 @default.
- W69528246 cites W2046235445 @default.
- W69528246 cites W2049887699 @default.
- W69528246 cites W2054580419 @default.
- W69528246 cites W2058040324 @default.
- W69528246 cites W2062844475 @default.
- W69528246 cites W2063759451 @default.
- W69528246 cites W2072951545 @default.
- W69528246 cites W2073017608 @default.
- W69528246 cites W2073523534 @default.
- W69528246 cites W2077106134 @default.
- W69528246 cites W2078306904 @default.
- W69528246 cites W2078700827 @default.
- W69528246 cites W2096359889 @default.
- W69528246 cites W2131510081 @default.
- W69528246 cites W2131621038 @default.
- W69528246 cites W2136090836 @default.
- W69528246 cites W2138865292 @default.
- W69528246 cites W2140269441 @default.
- W69528246 cites W2147287332 @default.
- W69528246 cites W2150350139 @default.
- W69528246 cites W2156277803 @default.
- W69528246 cites W2159529419 @default.
- W69528246 cites W2164175962 @default.
- W69528246 cites W2172220184 @default.
- W69528246 cites W2198716428 @default.
- W69528246 cites W2285424332 @default.
- W69528246 cites W2889492457 @default.
- W69528246 cites W3023912710 @default.
- W69528246 cites W66295990 @default.
- W69528246 doi "https://doi.org/10.7907/4jbe-gh29." @default.
- W69528246 hasPublicationYear "1992" @default.
- W69528246 type Work @default.
- W69528246 sameAs 69528246 @default.
- W69528246 citedByCount "0" @default.
- W69528246 crossrefType "dissertation" @default.
- W69528246 hasAuthorship W69528246A5051439235 @default.
- W69528246 hasConcept C105569014 @default.
- W69528246 hasConcept C105795698 @default.
- W69528246 hasConcept C111368507 @default.
- W69528246 hasConcept C120665830 @default.
- W69528246 hasConcept C121332964 @default.
- W69528246 hasConcept C127313418 @default.
- W69528246 hasConcept C128489963 @default.
- W69528246 hasConcept C159985019 @default.
- W69528246 hasConcept C177562468 @default.
- W69528246 hasConcept C182748727 @default.
- W69528246 hasConcept C192562407 @default.
- W69528246 hasConcept C196558001 @default.
- W69528246 hasConcept C205684552 @default.
- W69528246 hasConcept C24872484 @default.
- W69528246 hasConcept C2778517922 @default.
- W69528246 hasConcept C33923547 @default.
- W69528246 hasConcept C5072599 @default.
- W69528246 hasConcept C57879066 @default.
- W69528246 hasConcept C6648577 @default.
- W69528246 hasConcept C69357855 @default.
- W69528246 hasConcept C76563973 @default.
- W69528246 hasConcept C97355855 @default.
- W69528246 hasConceptScore W69528246C105569014 @default.
- W69528246 hasConceptScore W69528246C105795698 @default.
- W69528246 hasConceptScore W69528246C111368507 @default.
- W69528246 hasConceptScore W69528246C120665830 @default.
- W69528246 hasConceptScore W69528246C121332964 @default.
- W69528246 hasConceptScore W69528246C127313418 @default.
- W69528246 hasConceptScore W69528246C128489963 @default.
- W69528246 hasConceptScore W69528246C159985019 @default.
- W69528246 hasConceptScore W69528246C177562468 @default.
- W69528246 hasConceptScore W69528246C182748727 @default.
- W69528246 hasConceptScore W69528246C192562407 @default.
- W69528246 hasConceptScore W69528246C196558001 @default.
- W69528246 hasConceptScore W69528246C205684552 @default.